
Rethinking the
Electronic Healthcare
Record

Why the EHR failed so hard, and how it should
be redesigned to support doctors and nurses ef-
fectively in their work

J. Martin Wehlou MD, CISSP

Man In the Middle Books

c©2014 Man In the Middle AB, Uppsala, Sweden

ii

MAN IN THE MIDDLE BOOKS

First published in book form June 2014.
Cover design by Gilles Vandenoostende.
Printed edition ISBN 978-91-981706-0-3.

c©2014 Man in The Middle AB, Sweden.

Composed in Scrivener R©

Formatted for LATEX
by MultiMarkdown

iii

Dedicated to Danielle, Charline, Milena, Julian, and
Hania. You made this worth doing.

Martin Wehlou 2014

Contents

Contents v

List of Figures xi

List of Tables xiii

Draft versions 1

In a nutshell 3

Introduction 5

Terminology 9

Acknowledgements 13

I The basics 15

1 The business model 19
What are the economic incentives for doing the right thing?
What is the "right" thing?
1.1 Large-scale business model 19
1.2 Small-scale business model 20
1.3 The stakeholders . 22

2 What are doctors made of? 25
How do we train doctors? How do we keep them trained and
sharp after that?
2.1 Theory of the healthy human 25
2.2 Mechanisms of disease 26
2.3 Clinical examinations 26
2.4 Craftsmanship . 27

v

vi CONTENTS

2.5 Diagnostic and therapeutic knowledge 28

3 Encapsulation 31
Why do we need specializations? How do we keep them in-
dependent enough to evolve?

4 The History of medical records 35
We have to know where we came from to understand how we
arrived where we are now.
4.1 The absence of records 35
4.2 Paper-based mementos 36

5 How does the EHR fail to assist us? 39
As a doctor, what help do I expect from a well-designed med-
ical system? And why am I not getting it?
5.1 Compare to other knowledge areas 39
5.2 What should I do? 42
5.3 How should I do it? 42
5.4 What did I forget? 43
5.5 History in context . 43

II Current systems 45

6 The goal of the system 49
What seems to be the goal of current systems? Are we happy
with how that turned out?

7 Legacy EHR Example: Cosmic 51
To show what I’m complaining about, let’s deconstruct a typ-
ical current EHR system.

8 Knowledge support 57
What kind of knowledge support do we have today? Do we
use it? If not, why?
8.1 Original articles . 57
8.2 Review articles . 58
8.3 Textbooks . 58
8.4 Guidelines . 58
8.5 Continued Professional Education 66

9 How is the record created? 69
We’re entering data into the systems, but how and when do
we do that?

CONTENTS vii

9.1 The input method 69
9.2 The different results 71

10 The information model 73
Current systems are built on a model of the clinical reality.
What does that model look like? Is it correct?

III A consistent design 79

11 Necessary, but not sufficient 83
Any solution must satisfy this short list of conditions, else
it won’t be used. At least, not for long.
11.1 Effective use . 83
11.2 Context sensitive . 83
11.3 One single system . 84
11.4 Under the user’s control 84
11.5 Derivation of issues 84
11.6 Cover the full process 84

12 The phases of the clinical process 87
Observing a doctor working. This is how it looks.
12.1 Clinical encounter . 87
12.2 Overview of patient history 88
12.3 Clinical examination 91
12.4 Creating referrals and orders 94
12.5 Creating prescriptions 96
12.6 Creating the note record 99
12.7 Finding results . 100
12.8 Receiving results . 101
12.9 Reporting . 104
12.10 Reporting to national registries 105

13 The full medical process 107
From illness to cure, every step of the way.

14 The real requirements 111
After removing all the fluff, what’s left?
14.1 Awareness of issues 111
14.2 Awareness of patient history 112
14.3 Awareness of planning 112
14.4 Awareness of outcomes 113
14.5 Ensure action . 113

viii CONTENTS

14.6 Issue-based management 113
14.7 Recording of history 114
14.8 Recording of clinical examinations 115
14.9 Don’t lead me up the garden path 115
14.10 Confidentiality . 116

15 How active should the software be? 119
Who should run the show? We or the machines?
15.1 The keyhole effect . 119
15.2 The indiscriminate criteria effect 120
15.3 The disempowerment effect 120
15.4 Nurse vs doctor domain expert 120

16 The issue oriented record 123
It’s not all doom and gloom. Issue orientation to the rescue!
16.1 Diabetes, old style 123
16.2 Diabetes, new style 125
16.3 The template structure 130
16.4 The data pool . 136

17 Matching findings to templates 139
Getting from headache to migraine.
17.1 The initial findings 140
17.2 Combinatorial matching 140

18 Document tree 147
There’s logic in how we reason. This is how you persist that
logic in the system.
18.1 The attention list . 151
18.2 Encryption . 156

19 Transitioning and deployment 159
How do we get from here to there without climbing moun-
tains or upsetting the apple cart?
19.1 Phase 1, guidelines 159
19.2 Phase 2, combinatorial matching 160
19.3 Phase 3, analysis and feedback 161

IV Appendices 163

App. A: Document-tree design 167
A more detailed look on how medical documents relate to
each other.

CONTENTS ix

App. B: About the author 177
What happened to me, to make this book happen to you?

Bibliography 187

List of Figures

2.1 A clinical examination, as shown on the AAFP.org site . . . 27

3.1 Encapsulation flow . 32

5.1 Comparing how to fix two similarly complex things. 40

7.1 Cosmic, viewing the notes in the record 52
7.2 Cosmic in notes writing mode 53
7.3 Creating a prescription in Cosmic 54

8.1 Guideline for management of chronic cardiac failure, diag-
nosis and investigation. 60

8.2 Chronic cardiac failure, part of the treatment description. . 61
8.3 Summary table with literature references for chronic cardiac

failure. 62
8.4 Referral form for chronic cardiac failure. 64
8.5 Flowcharts for investigation and management of chronic car-

diac failure. 65

10.1 The “a few stacks” oriented architecture of legacy EHR systems 74
10.2 Legacy EHR document architecture 75
10.3 Just that one disease is here, here, and here. 76

12.1 A typical entry in a classic EHR 89

13.1 Steps in the complete care of a patient. 108

16.1 The series of issue template blocks in a typical diabetes patient. 126
16.2 Part of the workup block of the diabetes issue template. . . 127
16.3 Another part of the workup block for diabetes. 128
16.4 Filling in a referral and sending it. 129
16.5 After sending a referral, it is flagged in the block. 129
16.6 The therapy block of the diabetes issue template. 130

xi

xii LIST OF FIGURES

16.7 Selecting a dose from the recommended set. 131
16.8 Prescription is flagged in the block. 132
16.9 The blocks available in the diabetes issue template. 133
16.10 Part of a block showing six items. 134

17.1 The three groups of coefficients relating to clinical findings
and issue blocks. 141

18.1 Referral with two included documents 148
18.2 My system after receiving a reply to my referral 148
18.3 The document tree after writing the note 149
18.4 After creating the issue “Liver problem” at the top level . . 150
18.5 Having only written the referral 152
18.6 The referral has been made part of an issue 153
18.7 The document as received by the referee 153
18.8 The document as returned by the referee 154
18.9 The reply has arrived . 155
18.10 The doctor creates a note, a letter, and a prescription . . . 156
18.11 After the note is linked to an issue 157

A.1 A single note, dependent on two underlying documents. . . 168
A.2 Patient can have access to the root document, the issue. . . 169
A.3 The patient sees only handled elements. 170
A.4 The patient can be given direct access to unhanded elements. 171
A.5 When the element becomes handled and linked, the patient

also gets access. 172
B.1 The main unit of the HP 2100A mini computer. (Photo

courtesy of hpmemory.org, Marc Mislanghe.) 178
B.2 A TI–59 calculator docked to its PC–100A printer. (Photo

Wikimedia Commons, John Crane.) 180

List of Tables

0.1 Draft versions . 1

17.1 Meaning of terms in this discussion 142
17.2 Groups of coefficients . 143
17.3 Positive finding-to-issue example 144
17.4 Negative finding-to-issue example 144
17.5 Issue-item coefficients . 145
17.6 Issue coefficients . 146

A.1 Symbols for document references. 174

xiii

Draft versions

Table 0.1: Draft versions

Version Date

1 January 23, 2014
2 February 2, 2014
3 February 6, 2014
4 February 12, 2014
5 February 16, 2014
6 February 24, 2014
7 March 23, 2014
8 March 24, 2014
9 March 25, 2014
10 April 1, 2014
11 April 8, 2014
12 April 15, 2014
13 April 22, 2014
14 April 29, 2014
15 May 6, 2014
16 May 13, 2014
17 May 20, 2014
18 May 27, 2014
19 June 3, 2014
20 June 10, 2014
21 June 17, 2014
22 June 24, 2014

Download links

From version 9 and onwards, I’ll post preview versions every Tuesday to
the following URL:

http://wehlou.com/ehrbook/draft.pdf

1

2 DRAFT VERSIONS

Older versions will be preserved as:

http://wehlou.com/ehrbook/draft_X.pdf

. . . where “X” is a one or two digit number. For instance:

http://wehlou.com/ehrbook/draft_9.pdf

and

http://wehlou.com/ehrbook/draft_10.pdf

. . . and so on. The first one in the series is number 9.
For a while, I also published diff files, making it easier to see the difference

between the current and the previous version, but I had to stop doing this
as Adobe Pro gave me so much grief. The diff function really isn’t up to
snuff, and I know of no other software that can do this with pdf files.

Contributing comments

You’ll make me absolutely ecstatic if you contribute with comments of
all kinds, such as errata, arguments for or against what I’m saying, or
suggestions for expansion or other reading.
You can do that by any means that suits you, I’ll find a way to use it.

So go ahead and write me emails, send me scribbled notes on birch tree
bark, a mix tape, video confessions, or whatever, but one way that’s easy
both for you and for me is annotated PDF files. You can annotate my PDF
using any of these suggested tools:

• Acrobat Pro.

• Preview on OSX (annotation bar).

• GoodReader for iOS.

. . . or any number of other tools, some of which must exist for Windows.
If you want, I could prepare a special “for comment” version PDF that you
can annotate with just Acrobat Reader. Let me know by email, so I know
it’s worth doing.
You can send the annotated file back to me at:
martin@wehlou.com
If you don’t want a mention in my “Acknowledgements”, please say so.

Else I’ll include you.
Thanks!

In a nutshell

If you’re not sure if you want to invest the time or effort to read the whole
book, this summary is for you.
Medicine today is far from fulfilling its potential, and the reasons are

numerous. One of the most important reasons is that the documentation
system used today is fundamentally identical to the system used half a
century ago, and it was known to be defective even then. Nothing much
has been done to improve on it. The chance to improve it during the
transition from paper records to electronic records was squandered.
There are two steps in the handling of every patient case, the diagnostic

and the treatment steps. Both are very problematic and very much lacking
in completeness, rigor, and consistency.
The first step, arriving at the right diagnosis, is usually a very haphazard

process, relying on first impressions, intuition, and experience of the doctor.
The potential solutions to the diagnostic problems have been thoroughly
described by L.L. Weed [5] [6] , and this book incorporates many of his
findings and points, and adds to them in significant ways.
The second step, executing the right therapies and followup, has until

now not been systematically analyzed and converted to a form amenable
to automation and direct use by doctors. This analysis and how it should
be implemented form the major part of this book.
Medicine needs both these parts to be built, but they have to be built

in such a way that they seamlessly integrate with each other and form a
consistent whole. In what follows, I will show not only that these two steps
can be integrated, but that they enrich one another, and that together they
form a whole that can be gradually introduced into a working healthcare
system, while also being scalable. All the science and knowledge we’ve
acquired means very little unless we have tools to put that knowledge into
practice, in a safe and consistent manner.
Doctors today are expected to keep the huge and ever changing knowl-

edge base of medicine in their heads, performing both the complicated
diagnostic and therapeutic procedures without any substantial knowledge-
support systems. The only automation with any significant evolution is the

3

4 IN A NUTSHELL

documentation part, which, in comparison, has a relatively limited impact
on the quality of diagnosis and care.
First, we need to make the initial data collection about the patient much

more complete. This can best be done by using software to guide the
gathering of symptoms and clinical signs.
Then we need to use the initial set of clinical data to make a complete list

of possible diagnoses (or, as named in this book, “issues”). This candidate
list of issues further informs us of clinical signs and tests that should be
performed. This interaction between clinical findings and candidate issues
continues until a small set of likely issues have been identified.
Each issue comes with a template that not only describes the diagnostic

criteria for the issue, and thus informs the issue selection process, but also
contains all the information needed for further investigations and therapies.
This relieves the doctor from the hard and error-prone task of memorizing
every possible therapy and its details.
The interaction of different issues in the same patient also becomes

amenable to automated discovery and handling. All these features result in
a change of the role of the doctor, from an unreliable source of memorized
facts, to someone who, together with the patient, can judge and select be-
tween all the available diagnostic and therapeutic tools. The end result is
a much higher consistency of care, and a reduction in errors of commission
and omission.
A better document hierarchy that relates findings and conclusions to each

other in the same way that the doctor actually reasons and decides, makes
the documentation side of the EHR more amenable to understanding, and
allows auditing of the record. At the same time, this structure solves several
problems related to confidentiality and distribution of consistent parts of
the medical record.

Introduction

These notes started out as a brief outline for my yearly lecture at the
Karolinska Institute in Stockholm, to the students of the “International
Masters Program in Health Informatics”. As time went by, I began to
suspect that these notes harbored in them something bigger, maybe even
a book. After some procrastination, I finally started expanding on these
notes in January 2014, and what you see here is the result.
The target audience for the original notes consisted of students well-

versed in both medicine and technology, which explains why the notes tend
to slide from one area into the other without much of a transition.
Converting these relatively limited notes to a full book implies that the

target audience also changes in composition and character. Except for the
aforementioned students, I include doctors, nurses, and developers into the
intended audience. I think it absolutely necessary that developers learn to
appreciate the nuances of doctors’ use of the medical record, while I also
think it essential that doctors learn to understand the technical limitations
and possibilities inherent in these systems. Real solutions will not come
from two or more professional groups working together, but will only come
from each professional group reaching into the other’s knowledge area and
grabbing onto the stuff that they actually need. The design coherence
needed for fully useful system designs must sprout from minds that can
bridge the gap, and if these are in short supply, we must either produce
more of them, utilize them better, or both.
At the beginning of each chapter, I’ve added a little graphical indicator of

how technically difficult I think the chapter is. I see this indicator mainly
as a warning to doctors not to feel too discouraged if the contents seem
impregnable.
Another very important point is this: don’t look back! We have built IT

systems based on how paper records work, and that didn’t turn out well.
We also have to stop looking at current systems for inspiration on how
to build the next generation system, else they’ll also be dismal failures1.
Forget about the past. Think up new systems from first principles, and

1Yes, I take that as a given.

5

6 INTRODUCTION

it wouldn’t even hurt if you assumed that every solution that looks most
like what we have today is a bad idea and should be scrapped. The more
different from that, the better.
There are also a number of evolutions in the development of the EHR

that worry me. The structure of the medical records in their current form
is often done to “make the computer understand” the healthcare process.
If we think about the interaction of man and machine in healthcare, there
are three possible ways to go:

• Man does his job and then feeds the machine data for safekeeping
and management analysis purposes. This is what we have today for
the main part.

• Man feeds the machine sufficiently understandable data, so that the
machine can take the responsibility for the intellectual work. This
is the road a number of systems, including OpenEHR, seem to take,
except I find there is no basis for thinking the machine can take over
that job just yet. In the future, yes, but today?

• Man feeds the machine the minimum of data it needs to locate and
gather the resources man needs to take responsibility for the intellec-
tual work. This way we would improve man’s ability to work correctly,
while automating away man’s main weaknesses, namely memorizing
massive amounts of data, and consistent attention to detail. This is
the way I think we must progress for the foreseeable future.

One point I need to make clear: I have a lot of opinions about IT in
healthcare, but I’ve also spent a lifetime almost evenly divided between the
two fields forming the basis for those opinions. I don’t expect it all to line
up with other people’s thinking on the subject, in particular if they have a
background in only one of the two fields.
I will not limit myself to what I can prove, since that would make the text

far too short. Far too few of the important angles have been the subject of
objective research, so there isn’t much to put in the bibliography. It seems
much of the field is built upon preconceived notions and assumptions by all
involved, developers and medical staff alike, with mostly everyone assuming
somebody else has it all figured out.
My background, in brief, is in mathematics and medicine, including a

residency in general, vascular, and thoracic surgery, and specialization in
general medicine both in Belgium and Sweden. I’ve also developed software
for more than 30 years in several domains, including medical applications.
I’m still working part time in general practice and with clinical studies,
while also writing software. Appendix B consists of an extended description
of my background.

7

The book is organized in a couple of parts:

Part I

The first part covers the major “business cases” for creating EHR systems.
It also briefly analyzes what type of knowledge must be instilled into an
individual to make her into a physician. A very quick recap of the history
of medical records is then followed by a summary of the major ways the
current EHR systems fail us.

Part II

I go into how current EHR systems work, and why they work as they do.
I can’t help but complain about almost everything about these systems.

Part III

I go into how doctors work clinically, which real requirements we can de-
rive from that, and how a correctly designed EHR system built on these
requirements should look. I’m making the assumption that the main goal
of these systems should be to support clinical work, even though that is
clearly not the case today. But it must be in the future.

Appendices

The last part contains one appendix that goes into more technical detail
on the document tree design. Unless you are into building systems, or
comparing the designs in this book to other designs found elsewhere, you
could probably safely skip this.
There is a second appendix with a slightly longer history of the author’s

life story, at least as far as it applies to IT in medicine. This story does
help explain at least some of the design choices made in the book.

Terminology

In a text like this, one has to try to be clear with terminology. It is often
necessary to reduce the number of terms, even at the cost of losing some
nuance, just to avoid introducing ambiguity in the text. Here follows a few
selected terms I’ve raised to the level of “housebroken” and have used as
consistently as I’m able to.

Architect, designer, and so on

In this book, if not always in real life, we often use the following names of
roles of software builders.

Requirements Engineer

The requirements engineer takes the wishes and demands from the stake-
holders (users, buyers, owners) and converts them into a list of requirements
that can be used by the system architect, the designer, and the coder to
create a system fulfilling the wishes and hopes of the user and buyer2.

System Architect

The system architect, or architect for short, is the person on the develop-
ment team that takes the requirements and decides on the high-level struc-
ture of the system, such as what different software subsystems it should
consist of, which types of interconnections should be done and between
what, and on which platforms it will run on.

Designer

The designer takes the overall structure as defined by the architect and
boils it down to modules and interfaces, together with a description of
what interfaces and functions should do.

2Yes, that’s the idea, but in reality the buyer’s wishes greatly outweigh the user’s
wishes. Money speaks.

9

10 TERMINOLOGY

Coder

The coder takes the designs from the designer and creates code. His output
should be the executable deliverable.

Developer

In this text, the term “developer” is used to mean anyone directly involved in
the production of the software, which makes it applicable to the coder, the
designer, and the architect. It’s useful to regard the requirements engineer
as a developer as well, in general. Whenever it’s not necessary to define
exactly which type of software person referred to, the term “developer” will
be used.

EHR

Electronic healthcare records (EHR) are often called “Electronic Medical
Records” (EMR), and there seems to be no useful distinction between those
two terms, but there are arguments to the contrary3. If there is a difference
then the “EMR” is more akin to the old paper records, while an “EHR”
reaches beyond that to include both other organizations and other tools.
“EMR” occasionally means “Emergency Medical Responder”, which can

confuse things. It can also mean “Explosive Mishap Report”, confusing
things even further.
“EHR”, on the other hand, has a much shorter list of interpretations. It

does include “Explosive Hazards Reduction”, which we can only see as a
positive.
In this text, only the term “EHR” will be used, to the exclusion of “EMR”

for the above reasons.

Issue

We need to have a name for the reason we see patients. We can’t call it
a “disease”, since seeing a one-year-old for a regular growth check, isn’t a
“disease”. We can’t call it a “problem”, since that insults the women we
see for pregnancy follow-up. I’ve chosen to call these “issues”, or sometimes
“healthcare issues” for extra emphasis.

3http://www.healthit.gov/buzz-blog/electronic-health-and-medical-records/emr-vs-
ehr-difference/

http://www.healthit.gov/buzz-blog/electronic-health-and-medical-records/emr-vs-ehr-difference/
http://www.healthit.gov/buzz-blog/electronic-health-and-medical-records/emr-vs-ehr-difference/
http://www.healthit.gov/buzz-blog/electronic-health-and-medical-records/emr-vs-ehr-difference/

TERMINOLOGY: ISSUE TEMPLATE 11

Issue Template

The management of a healthcare issue consists of a series of guidelines,
references to publications, addresses we can refer to, a range of diagnostic
techniques and therapeutic actions, advisories, medication types, products,
and dosages, equations, resource scoring, and more. This entire set of
information and tools needed in the management of a healthcare issue is
collected and organized into an “issue template”. This term implies the
technical implementation of the management of a healthcare issue, but here
the term is used in both senses, as the collection of tools for management of
an issue, and as the technical implementation of such a collection of tools.

Item

The term “item” is used in two senses. In the context of “issues”, an “item”
is a one-liner, a certain clinical finding with it’s set of possible values. It’s
the smallest part of a guideline, and therefore the constituent part for issue
templates. For instance, “Blood pressure” can be an item, just as “Cardiac
sounds” can be one.
In many other instances, “item” is used to mean what most people mean

with “item”. Such as “I have two items in a basket”, or “are those two an
item”?

His and hers

When writing a text, we always have the problem of what gender to use in
third person. It’s all too easy to write “him” all the time, and be revealed
for the crypto chauvinists most of us older male doctors are deep down
inside. But going to the other extreme, using “her” all the time, would
lend a certain creepiness to the text. You can’t go writing “him or her”
everywhere either, since it simply looks ridiculous in the long run, and
breaks the rhythm of the text, if it ever had one.
My chosen strategy is to mix it up a bit. In situations where I have

to choose, I’ll let the doctor be female, at least in situations where the
doctor comes out looking smart. When the doctor is described as confused,
or easily distracted, or of somewhat limited ability, I’ll often use “him”.
Patients will usually be represented as males, too.
Yes, I realize this is also a prejudiced way of thinking and writing, but

I’m less afraid of men than of women.

Acknowledgements

In no particular order, I’d like to thank the following people for construc-
tive criticism and corrections of the text: Kim Nevelsteen, Peter Olsson,
Göran Agerberg, Johan Månflod, Jack Holleran, Ingrid Eckerman, Karin
Lindhagen, and Anders Westermark.
I’d like to thank Mary Brown of Capella University for an insightful

perspective on the US medical informatics scene.
Chris Bunch and Jeremy Dwight were kind enough to allow me to use the

CHF guideline as an example, and both contributed important viewpoints
on the creation and management of guidelines in general.
Bengt Dahlin contributed with his knowledge on the history of the med-

ical record.
I’d also like to thank Jerker Green for many inspiring discussions on this

theme.
And last, but not least, Hania Uscka-Wehlou, my wife, for inspiration,

discussions, corrections, both linguistic and contentwise, LATEX-assistance,
and providing the encouragement to do this in the first place. And a lot of
other things I’m not going to discuss here.

13

Part I

The basics

15

SUMMARY 17

Summary

Before going into what’s wrong with current systems, or how to build the
next generation, we have to look over the basics of medical record keeping.
These basics include identifying the driving business models, the stakehold-
ers, the motivations of the stakeholders, and how doctors are trained and
kept up to date. It must also include the history of the medical records,
and an outline of the relationship between the medical record and the pro-
fessional, in other words, how does the medical record actually help the
medical professional do a better job?

Chapter 1

The business model

What are the economic incentives for doing the right thing?
What is the "right" thing?

There’s a business model behind every decision on how to structure
healthcare and its support services. That business model could be based on
the overall cost to society of healthcare issues, versus the cost of providing
relief and prevention. These are the concerns at a large scale, by region
or nation. On a smaller scale, the business model could include measures
intended to reduce or displace costs, such as moving them to other actors,
and measures to optimize handling of cases.
Let’s take a few examples to illustrate the difference between the large-

scale business model and the small-scale business model.

1.1 Large-scale business model

If we calculate the cost to society of a case of polio, including treatment
cost, assistance cost, and loss of productivity, we find that it’s much more
expensive than the alternate cost of prevention1. It’s obvious to anyone,
except maybe to the anti-vaccination nut cases, that global vaccination and
ultimate eradication of the virus is an amazingly good idea.
The same calculation has also been made for certain types of cancer

where we have useful screening methods, such as for breast cancer, and
colon cancer, and early detection and treatment is the winning proposition,

1http://www.polioeradication.org/Portals/0/Document/Resources/StrategyWork/
EconomicCase.pdf

19

http://www.polioeradication.org/Portals/0/Document/Resources/StrategyWork/EconomicCase.pdf
http://www.polioeradication.org/Portals/0/Document/Resources/StrategyWork/EconomicCase.pdf
http://www.polioeradication.org/Portals/0/Document/Resources/StrategyWork/EconomicCase.pdf

20 CHAPTER 1. THE BUSINESS MODEL

even without considering the human cost of contracting cancer and having
it detected too late for curative treatment.
We can also show that the correct and effective treatment of joint disease,

diabetes, hypertension, vascular disease, and a host of other problems, is
a generally good idea from a national economics standpoint. All these
things cost less to society as a whole if treated according to the state of
the art. Even bleeding edge, and often extremely expensive, treatments are
economically defensible once we take the evolution of the treatment into
account over a period of time. Many of these initially expensive treatments
lead to much more affordable and much more applicable treatments in
the future, treatments that would never have been developed if the initial
expense wasn’t made.
In short, paying for the best healthcare you can provide to your popula-

tion is one hell of a good investment for any nation, even without consider-
ing the human cost of disease. No civilized nation would argue otherwise2.
If healthcare is managed primarily according the benefits to the nation

as a whole, the systems developed for healthcare will focus on providing
prevention and treatment from a medical perspective. The management of
local expenditures will still play a background role, while the calculation
of “profit” makes no sense. There’s no immediate and local payback for
each treated patient; the payback is on a national scale and in a longer
perspective.

1.2 Small-scale business model

The small-scale business model comes into play for a hospital, a depart-
ment, or a practice. It’s all the rage in models like New Public Manage-
ment (NPM), where departments are made into cost centers, and each is
incentivized to increase profits and reduce costs, on the assumption that
if all departments become more cost conscious and more profitable, the
organization, even the nation, as a whole benefits.
This model has been used for a long time in industry, and is becoming

increasingly discredited even there, especially since the most profitable in-
formation technology companies are abandoning this model. Companies
are increasingly seeing the benefit of having all departments work for the
common good of the company as a whole, instead of artificially competing
with one another. Healthcare seems to be a few decennia behind on this
learning curve.
When applying this cost center model to healthcare, at least in Sweden, a

fictional cost is assigned to diagnostic and therapeutic actions. Medication
prescribed is assigned the retail cost and “charged” to a fictional budget

2Except the USA, but you guys are slowly getting the message, too.

1.2. SMALL-SCALE BUSINESS MODEL 21

the prescribing organization has. Every radiology exam, or lab order, is
similarly “charged” to the provider that ordered it. Every visit from a
patient ends up on the “profit” side. The idea is that providers should be
incentivized to save on costly examinations and treatments, while at the
same time seeing as many patients as possible.
In this whole arrangement, two important incentives are missing. First,

referrals are “free”; they don’t incur a “charge” on the referrer. Secondly,
there’s no “reward” for actually making patients better. See where this is
going?
In order to keep organizations in pretend money3, the trick is to refer

patients to someone else if it looks like their treatment is going to “cost”
more than their visits bring in. On the other side of the referral, the referee
is incentivized to refuse as many referrals as possible, especially if they
look like they’ll need a lot of expensive care. Or, alternatively, they’re
incentivized to only accept referrals where the originator of the referral has
done as many expensive diagnostics as possible before referring the patient,
on the referrer’s own “dime”. This turns the referring procedure into a
confrontational game, instead of the cooperative effort to help and serve
patients it should be.
Just to take an example: orthopedic surgeons take a lot of X-rays, since

that is one of their most important diagnostic tools. They need them in
most, but not all, patient cases. X-rays are therefore a large “cost” item in
their budget, and they’d love to get patients referred who already had all the
required X-rays taken beforehand to save on cost. In some places, they’ve
taken this to the logical extreme. A department of orthopedics may not
even accept a referral without accompanying X-rays. This causes a lot more
X-rays than necessary to be made. The result is a hugely increased total
cost of healthcare, longer waiting times for other types of X-rays that are
really necessary, and a loss for everybody’s budget, except the department
of orthopedics, which comes out looking more efficient.
Other examples are: the emergency department sending patients to pri-

mary care for writing prescriptions, cardiologists referring patients back to
the referrer with a recommendation for the referrer to prescribe expensive
medication the cardiologist prefers but can’t “afford”, and more of that kind.
In each instance, the patient is given a run-around, while the total cost of
care goes up, and the originator of the problem is rewarded for being budget
conscious. It’s important to remember that the Swedish healthcare system
is firmly “single payer”, so all these costs are ultimately covered by the same
agency, the state. The whole exercise is futile, idiotic, and expensive.

3The departments with most pretend money left and the end of the year, get pref-
erential treatment when it comes to staffing and costs the year after.

22 CHAPTER 1. THE BUSINESS MODEL

If healthcare is provided under a small-scale business model such as NPM,
the supporting systems become essential to the process of calculating and
controlling costs, and keeping tabs on profitability, for the department or
institution using them. Any benefits on a national scale or long term will
become invisible and ignored. This explains why there is no business case
for better healthcare under these ideologies, only in local sub-optimizations.
Small business scale practices make sense in small businesses, make very
little sense in major corporations, and are absolutely toxic to large-scale
population concerns such as healthcare.

Finally, we have to note that regardless of budgets, the tax
paying citizens may want to pay for healthcare, even if it isn’t
economically efficient. Human wellbeing consists of more than
financially measurable aspects of life. It’s absurd to only invest
in measures that result in a monetary return on investment. If
that was all we were concerned with as humans, we wouldn’t
procreate.

So, how come patients aren’t worse off than they are in Sweden? With
a model like the one I just described, one would expect the healthcare to
be really crappy, but it isn’t. The explanation for this lies in a little bit of
compensatory socialism; doctors aren’t paid according to the outcome of the
budget numbers, or the number of patients. Doctors, in general, receive a
fixed monthly salary, making them independent of the NPM game. So even
though it’s a real hassle having to argue with the orthopedics department,
and others, over referrals, doctors have no incentive to save on these fictional
charges, usually preferring to get the patient taken care of, regardless.
In short, it seems we’re lucky that doctors don’t need to care about the

NPM numbers and budgets, partly neutralizing the best efforts of public
management to corrupt and destroy the healthcare delivery process. One of
two things can happen in the future: either the whole NPM idea is scrapped
and replaced with a larger scale motivational system that measures and re-
wards healthcare outcomes, as it should do, or doctors move off the fixed
salary regiment and become rewarded according to the NPM based mea-
surements, including small-scale monetary rewards, moving Swedish health-
care to a similar system as the USA, almost certainly making healthcare as
inefficient, and unequally distributed as it is there [4].

1.3 The stakeholders

A number of different professional groups have a stake in how the electronic
healthcare record system works. Each of their primary uses of the system
differs, and the demands on functionality are often in conflict.

1.3. THE STAKEHOLDERS 23

Physicians mainly use current systems to record and retrieve patient
histories, and to send and receive referrals. Other important uses are: the
creation of prescriptions for medication, orders for radiology, orders for
other technical diagnostic procedures, retrieval of radiology reports, and
retrieval of lab reports. The system is also used to create correspondence,
such as letters to patients.
A physician working in her own practice will also use the system to handle

billing and payments.
The above reflects how current systems are used by doctors, but if the

system was better, it could be used to support in the management of diag-
nosis and treatment of diseases, too.
Nurses use the system to find out which diagnostics and treatments the

physician has ordered, and to take notes on the progression and results.
Administrators mainly use the electronic healthcare record to measure

the production as number of patients, severity of caseloads, how many beds
are free, and more such. It is in administrators’ interests that as much
data as possible is coded in a way that allows statistical analysis of the
organization and its throughput.

Since there are several stakeholders, all the groups should have
their interests represented when designing the systems. As it
is today, the interests of the management group not only over-
shadow the interests of the clinical groups, but is also increasingly
displacing them. As a result, healthcare systems turn into man-
agement systems where the role of doctors and nurses, as far as
the system is concerned, is progressively reduced to that of data
input clerks. There’s very little, if any, effort to increase the util-
ity of healthcare systems for better diagnostics and treatments.

Chapter 2

What are doctors made of?

How do we train doctors? How do we keep them trained and
sharp after that?

Naturally, we’re all made of some calcium, water, neural cells, and not
an inconsiderable amount of intestinal content, but what we really should
discuss is what kind of knowledge and training is necessary to “build” a
functioning physician. How do you go from being just a regular person to
a medical doctor able to make decisions affecting the health of a patient?
The knowledge we need can be divided into theoretical knowledge of the

healthy human, knowledge about the mechanisms of disease, dexterity in
clinical examinations, craftsmanship in diagnostic and therapeutic proce-
dures, and current knowledge about diagnoses and therapies for a range of
problems.

2.1 Theory of the healthy human

The initial courses at medical school are all focused on teaching the basic
normal functioning of the human body. This includes stuff like biochem-
istry, anatomy, physiology, and more. As years go by and science advances,
this body of knowledge tends to increase rather rapidly. We have long left
behind us the time when an individual doctor could more or less have a
grasp on all we know of the normal human body, so we have to assume that
the practicing physician will only have at his fingertips the most rudimen-
tary facts about the body. Any clinical work that requires a more detailed

25

26 CHAPTER 2. WHAT ARE DOCTORS MADE OF?

knowledge must also be supported by tools that provide the clinician with
the knowledge needed.
Except for the occasional old anatomical atlas and well thumbed bio-

chemistry book, you won’t find many such tools in most clinician’s offices,
simply because very few of these tools exist. Even if they did, the clini-
cian usually has just the one computer for the medical record, and those
tools either don’t work on that system, aren’t allowed to be installed by
less than helpful IT support staff, or don’t work together with the existing
medical-record software in any case.

2.2 Mechanisms of disease

Knowledge about mechanisms of disease is rapidly evolving. It’s evolving
so fast that any course knowledge the doctor may have is quickly outdated.
There is a need for constant education about these developments, not on
a yearly basis, but on a monthly or even weekly basis. Reading medical
journals and participation in medical symposia also helps keep us updated,
but it’s a very hit-and-miss proposition if what is learned comes to practical
use before it’s forgotten again.

2.3 Clinical examinations

Clinical examinations include routines such as taking a blood pressure, lis-
tening to the chest sounds (and recognizing what you’re hearing!), palpat-
ing the abdomen, testing reflexes, evaluating joints and tendons, and so on.
How to do most of these clinical examinations must basically be taught in
person, during classes or during work in the clinic with a real patient and a
tutor. Some of these examinations can also usefully be taught to an already
experienced physician with the aid of diagrams and explanations. An ex-
ample can be seen in the excellent webpages from the American Academy of
Family Physicians (AAFP1), about the examinations of the shoulder joint,
a pretty complex subject (see figure 2.1).
The illustration looks as if it came out of a jujitsu manual, but actu-

ally demonstrates one of the important clinical tests for instability of the
shoulder joint. It is described in text, with an image how to perform the
test, and the meaning of a positive test (anterior glenohumeral instability)
is also mentioned briefly.
Anyone who is not a shoulder specialist, would be hard pressed to re-

member this test, how it’s done, and what it means. We’ve got hundreds
of other clinical tests to remember, and this is one of those that are easily
forgotten.

1http://aafp.org

http://aafp.org
http://aafp.org

2.4. CRAFTSMANSHIP 27

Figure 2.1: A clinical examination, as shown on the AAFP.org site

What we need in practice is a quick reference that pops up when we have
a patient with shoulder problems. That reference should include this and
other relevant tests, so we know what to do. As it is today, doctors have
to know about the existence of the AAFP website, know where to look and
go find the test. Not only that, we’ll also have to describe the test, at least
briefly, in the medical record together with the result. If we don’t, a future
reader of the patient record will either not know what we’re talking about,
or will have to look up the test and the meaning anew, and this process
will have to be repeated each time the record is read.
Clearly, what we need is a direct and current link between the documen-

tation for how the test is done, with the result of performing the test on the
patient, and have all that become a part of the patient’s medical record2.

2.4 Craftsmanship

Craftsmanship comes into play when it’s time to draw blood, open the
abdomen, hack off limbs, check the eyesight or retina, or aspirate earwax.

2Spoiler alert: the solution is an iotaMed-type application, as I describe on page 123
and onward.

28 CHAPTER 2. WHAT ARE DOCTORS MADE OF?

Depending on speciality, this craftsmanship can go from the very limited,
as for psychiatrists3, to the very extensive, as for surgeons.
Most, if not all, of this craftsmanship must be learned the same way

ironsmiths learn their skill, in a master-apprentice setup. When these skills
need updating, doctors again go watch each other do whatever it is that is
being done, then try it themselves under initial supervision. There is some
help that IT systems could provide for this process, but nothing earth-
shaking4. This type of learning process probably needs to stay the way it
is for the foreseeable future.

2.5 Diagnostic and therapeutic knowledge

Knowledge about diagnostic tools falls partly into the same category as
“clinical examinations”, but it encompasses much more. Knowing which
radiology studies to order for confirmation of exactly which diseases, is a
skill that needs constant updating. Knowing which lab tests are available
and what they mean, also takes some considerable work to keep up to date.
Even knowing which diseases can be diagnosed using available tools is far
from simple. Worse, even knowing which diseases exist is a challenge5.
The therapeutic arsenal, i.e. the number and kind of methods we have at

our disposal to alleviate diseases, is changing at a fantastic pace. There is no
way a practicing physician can keep track of even a fraction of what is going
on in this area, except for a tiny part of a single speciality. Even knowing
which other speciality to refer a patient to, or even that the patient should
be referred at all, is complicated enough to be regarded as a significant
problem in its own right.

The sum total of all diagnostic and therapeutic knowledge is so
vast, and so rapidly changing and expanding, that it’s impossible
to rely on human memory alone. There’s not enough hours in
a day for any doctor to even barely keep up. This is where we
need knowledge-based tools the most. But to make them even
remotely useful, they have to be linked to the medical record in
such a way that searches are triggered and enhanced based on the
information about the patient in the records, and that the results
from such searches also becomes part of the patient’s information,

3Practically all of a psychiatrist’s skill lies in other areas than the purely manual.
4There’s a lot of hay being made of computer simulations for training surgeons,

but it’s out of proportion to its relative importance, at least compared to other urgent
problems in medicine that need computerization. But there’s more money to be made
more quickly selling simulators, I guess. Or, just as likely, it’s easier for journalists to
understand.

5Which, by the way, is far fewer than the internet would have you believe.

2.5. DIAGNOSTIC AND THERAPEUTIC KNOWLEDGE 29

including the conclusions the doctor drew from the searches in
view of the patient’s particulars.
Having searches of the universe of knowledge unconnected to

the patient record not only increases the cognitive load on the
doctor beyond the bearable, but also loses a large part of the
advantage of automation, since the relationships found, and de-
cisions made by the doctor cannot be persisted into the record.
This implies they can’t be used as a base for future analysis and
decisions. The waste of human intellectual effort is simply epic.

Chapter 3

Encapsulation

Why do we need specializations? How do we keep them inde-
pendent enough to evolve?

If we forget about healthcare for a minute, and look at how information is
handled in other parts of science and society, we can see that as the informa-
tion and knowledge volume increases, compartmentalization and delegation
compensates for complexity and allows us to keep evolving. As an example
that should be easy to visualize, let’s take programming. Without going
into the entire history of computing, we can claim with confidence that one
of the most important steps in the evolution to highly complex systems was
the invention of object oriented programming (OOP). OOP is based on the
following ideas:

• The details of an implementation should remain invisible to everyone
using an object in a larger context, so much so that the internal
coding, the implementation, can change as long as the use of it by
other objects does not change.

• The interface to the object should be minimal and contain nothing
that depends on the exact inner workings of the object.

• At each level of abstraction, the programmer composes objects and
creates a new object with a higher level of abstraction.

This way, OOP leads to ever higher levels of abstraction, each level being
free from knowledge of details of objects at lower levels of abstraction.

31

32 CHAPTER 3. ENCAPSULATION

Figure 3.1: Encapsulation flow

Correctly done, OOP removes from view all the internal complexity you
don’t need at any particular level of complexity. This staged reduction
of detail, opaque encapsulation, is what turns a potentially exponential
growth of detail into a linear process that can be handled by human minds.
In medicine, the same process applies. The patient talks to the general

practitioner (GP) using a high-level API: “I’m sick. I think it’s my liver. It
runs in the family.”
The GP reasons to himself in much more detail: “The liver. Right. . .

What he probably means is that he’s prone to nausea and stomach aches,
but that’s probably because his whole family is living off hamburgers and
get into drunken fist fights over the TV remote. Anyhow, I’ll check his
transaminases, not forgetting the gamma-GT.” But what he says to the
patient after poking his abdomen for a bit is something like: “Hm. . . your
liver is maybe a little tender, we’ll run some tests.”
If the GP had gone to a continued professional education (CPE) class

and learned that there is now a virus causing a deadly disease involving
symptoms of nausea, fights, and remotes, and that it was brought to earth
by the moon landing crew1, he would still have responded the same way:

1Don’t worry. I’m lying.

33

“We’ll run some tests”. In other words, the change in the GP’s internal
implementation of how to do medicine in a family practice in the space age
does not lead to a change in his information interface towards the patient.
The GP is fully encapsulated and OOP compliant.
Let’s push this example a bit and assume something is terribly wrong

with the lab tests and the GP refers the patient to a gastroenterologist
with the general question: “What’s up with this liver? Maybe a biopsy
would be a good idea?”
Now, let’s further assume that the gastroenterologist agrees2, goes on to

make an appointment for a biopsy, chooses the most suitable ultrasound
transducer, the right needle gauge and length, etc, etc, and does the biopsy.
The gastroenterologist, in turn, sends off the specimens to a pathologist for
microscopic, and possibly histochemical, analysis.
The pathologist also does his thing coloring, embedding, slicing and dic-

ing, etc, etc, and all this results in an answer from the pathologist to the
gastroenterologist detailing the microscopic findings, and elaborating on the
type of tissue damage seen. The terms “cirrhosis” and “steatosis” may have
been used in this report. A few other minor types of cell damage or prolif-
eration is also noted. Since the pathologist does not report all the different
preparation steps or solutions and equipment used, the pathologist is also
encapsulated and has a restricted interface versus the gastroenterologist.
The gastroenterologist looks at this report, decides from the clinical pic-

ture and the pathology report that the cirrhosis is significant, the steatosis
less so, since it’s very common in the general population, and that the other
findings of minor cell damage are coincidental and irrelevant for the current
major complaints. So the gastroenterologist reports only the most signifi-
cant findings to the GP, and just takes notes of the less significant findings
in his own notes, just in case they will turn out to be relevant later.
So, in summary, the gastroenterologist reports to the GP something like

this: “The biopsy showed a moderate degree of cirrhosis with some steato-
sis”.
At this point, the GP is supposed to understand “cirrhosis” and “steato-

sis” and more or less know what to do about it (cut out the alcohol and
the hamburgers; the fist fights present no problem). But the GP does not
need to know how to do a liver biopsy or how to prepare the samples for
microscopy or even how cirrhosis looks in a microscope. Even if the spe-
cialist buys new equipment and then does his biopsies in a different and
better way, this makes no difference in the interface between the GP and
the specialist. In this example, the gastroenterologist is fully encapsulated
versus the GP.

2This does happen.

34 CHAPTER 3. ENCAPSULATION

This encapsulation allows every layer of abstraction to evolve
independently. The GP can change and improve his methods
without the patient noticing3. The specialist can change and im-
prove his methods without changing his interface towards the GP,
and the pathologist can modify his methods without changing his
interface towards the gastroenterologist. This is the only way to
allow medicine to evolve, going from the “super GP” who knew all
of medicine in the middle ages4 to the super specialists of today.

It is relatively easy to see that the same process of layered levels of
abstraction of knowledge applies in all intellectual human endeavors, not
only programming and medicine.
And here comes the moral of this story:

To allow medicine to work efficiently, we must mirror the same
levels of abstraction, encapsulation, and separation of concerns in
the EHR as the EHR becomes our primary tool. Only high-level
information should be shared by default, not the details. If we
keep flattening the EHR as is generally done today, with access
to every detail at every level, we’re moving medicine back into
the middle ages instead of forwards into the 21st century.

And, more bluntly:

Large, unified EHR systems are a really bad idea. A much
better idea is loosely coupled specialist systems, each with a nar-
row interface, mirroring object oriented systems and allowing full
knowledge encapsulation.

Exercise for the student: how does this destroy the idea of allowing the
patient access to the EHR as it is implemented today?

3Except as better, quicker, and perhaps even more gratifying encounters with pri-
mary care.

4Which wasn’t much.

Chapter 4

The History of medical records

We have to know where we came from to understand how we
arrived where we are now.

As in all books, there is this “history” thing. But in this case, the history
is essential to understand why things are as bad as they are.
In what follows, remember that I’m old enough to have actually lived

through the described evolutionary stages myself, and I ain’t dead yet.

4.1 The absence of records

Not long ago, some family practitioners had no medical records at all.
When I first took over a practice in Belgium in the 80’s, the “records” I got
consisted of two stacks1 of documents:

1. Letters, lab reports, and other documents that my predecessor had
not yet seen and discussed with the patient, in reverse chronological
order. In other words, they were dumped on top of each other as they
came in.

2. The same kind of documents, after they’d been seen, in order of their
processing. In other words, they were dumped on top of each other
in the second heap once seen and discussed with the patient.

1Literally stacks: one of them was a meter high, the other a third of that.

35

36 CHAPTER 4. THE HISTORY OF MEDICAL RECORDS

The system, if you can call it that, worked as follows: the patient comes
in and asks what the specialist said or what his blood tests showed. The
doctor then asked around what time the visit to the specialist occurred
or the drawing of blood, then proceeded to locate the document in stack
number one. After reading it and discussing it, he prescribed something or
other and off the patient went. The document ended up on stack number
two and was never seen again. The whole incident then lodged somewhat
loosely in the memory of the doctor and hopefully more permanently in the
memory of the patient.
Obviously, this “system” can only work for a limited number of patients,

and only if they stay with the same doctor for a long time. This kind of
patient-doctor relationship was common back then, but is rapidly becoming
extinct as both doctors and patients become much more mobile. Also, the
number of doctors, both general practitioners and specialists, involved in
the care of a patient, is increasing, resulting in the number of contacts
between each doctor and any particular patient going down.
But the worst aspect of this old type of doctor-patient relationship is that

it is dangerous. Important details are forgotten, and the patient’s history
can’t effectively be transferred from one doctor to his successor.

4.2 Paper-based mementos

Obviously, this was a terrible state of affairs. Around this time, most GPs
in Belgium started keeping a real medical record for two reasons:

1. Fear of lawsuits. If you’re sued for malpractice and you have no
records at all, you’re doomed.

2. To memorize details, such as exactly which medicine was prescribed
for exactly what period of time, exactly when. And blood pressure
measurements, and such.

In other words, the paper record evolved to store hard to remember
details in diagnosis and treatment on the one hand, and simultaneously to
be a log of all interactions with the patient for legal reasons. The knowledge
about the patient as such, his diseases, preferences, and most of all the
overall plan in the diagnosis and treatment, was not so much written down
as memorized by the doctor. After all, the patient always went to the same
doctor anyway, so why write it down?2

Sweden had proper records for patients much earlier than Belgium. Gen-
eral practitioners (“provincial doctors”) had an obligation to keep notes on

2It was also a great incentive for the patient to stick to the same doctor.

4.2. PAPER-BASED MEMENTOS 37

both patients and events in the environment, and this started roughly 200
years ago. They had to report yearly to the authorities on the state of
health and risk factors. About a hundred years ago, there were already
regulations about the minimum content of medical patient records, but
not on its form. Most records were extremely brief, and most information
about the patient was never written down, but maintained in the head of
the doctor. Even as late as 50 years ago, most records were kept on index
cards, since that was ample space for the brief information.
In the 1970’s, it became more common to have several doctors manag-

ing the same patients, so more extensive records were needed. A Swedish
standard form of medical records was developed (the Spri project), and a
number of elements of the records became well defined.
The problem-oriented medical record (POMR)3 was introduced in the

1970’s. As part of POMR, the subjective-objective-assessment-planning
(SOAP) model for the record was introduced. The SOAP model, without
the underlying POMR model, can be seen in widespread use in other parts
of Europe, but is fairly uncommon in its pure form in Sweden today.
During the 1980’s, computers came into medical practice on a large scale.

The applications were largely based on the preexisting paper records and
were in fact treated as a faster and more advanced version of the same basic
information carrier. It was never conceived as anything more that a record
that allowed efficient retrieval of essentially the same information as had
previously been kept on paper and in folders.
A very good source for much more detailed information on the history,

the structure, the events, and the systems (in Swedish), can be found on
Bengt Dahlin’s site4.
The key thing to remember is this:

The classic paper-based medical record was only intended to
support the family doctor in the maintenance of hard to memorize
details and was never designed to contain the overall picture of
the patient or any diagnostic or therapeutic plan. Since there
is no assigned and permanent doctor in most practices anymore,
it makes no sense to automate the paper-based records without
considerable adaptation to the new medium. But that is exactly
what has happened. The electronic record is designed as if it
was a paper record, but in digital form. All the opportunities
for improvements that the digital form brings have been missed.

3The problem-oriented medical record was described by Lawrence L. Weed in his
book published in 1970 [5]. A summary of the idea can be found at: http://medical-
dictionary.thefreedictionary.com/Problem-Oriented+Medical+record

4http://www.bengtdahlin.se

http://www.bengtdahlin.se
http://www.bengtdahlin.se

38 CHAPTER 4. THE HISTORY OF MEDICAL RECORDS

Current medical records are characterized by a torrent of largely
useless details without a unifying context.

Chapter 5

How does the EHR fail to assist us?

As a doctor, what help do I expect from a well-designed medical
system? And why am I not getting it?

It’s useful to compare the tools and methods we use in medicine with
how other professions evolved. All professions have in common that they
use knowledge, methods, and tools to achieve a goal. Medicine is more
lopsided than most professions, lacking many of the tools we need for opti-
mal performance. Not so coincidentally, it is unique in the sense that most
tools for medical professionals are specified, designed and developed by lay
people, while most other professions aren’t that unfortunate. Pilots have a
say in how cockpits should look, architects have influence on the software
they use for design, but doctors often get medical-record software that no
doctor would have specified. The result is a system with entire missing
areas of coverage, and we need to look into what those missing areas are.

5.1 Compare to other knowledge areas

We don’t have to make a choice between a system that assists us in decision
making and a system that documents our actions, since the very process of
working through a problem using knowledge support can be automatically
documented, and in itself covers a major part of that documentation. One
could argue that any documentation that covers a part of the medical events
that are not part of a process, that is of a decision tree, except the patient’s
subjective history, by definition has no consequence and is thus of less value.
The exception being, of course, parts of the medical process that are not

39

40 CHAPTER 5. HOW DOES THE EHR FAIL TO ASSIST US?

covered by the tool currently used for knowledge support, but which should
have been.

With this reasoning, we arrive at the conclusion that any free-form
medical-record notes are a symptom of defective knowledge support func-
tionality, which is a good description of all of our notes as done currently,
since there is no knowledge support functionality at all worth the name in
any of our systems.
To see how the EHR fails in assisting doctors in their work, we need to

compare it to other known processes that do work much better, and the
example I’m choosing is “fixing a computer”, since that is what most of us
do far too often.
If we put the process of “fixing a computer” right next to the process

of “fixing a human”, we can find the same five stages or phases in both
processes:

Figure 5.1: Comparing how to fix two similarly complex things.

The first part, “basic knowledge” (of computers), has the corresponding

5.1. COMPARE TO OTHER KNOWLEDGE AREAS 41

“basic knowledge” (of humans) in the other column. These requirements
are somewhat analogous for the two knowledge areas.
The second step, the “history” part is the only thing we have developed

to a significant extent in EHR systems. Similar to the “computer fixing”
process, this is not the most important step. It’s nice to have, sure, but
surprisingly easy to live without.
When we get to step three, “examine machine” vs “examine human”, we

find support for some, such as radiology, lab, and most therapies.
The real “meat” of the process to fix a computer is in the fourth step: “user

groups and books”. Not many computers would be fixed today without the
ability to reference what other people have seen and how to fix it (or not, as
may be). Trying to fix a computer without any reference to these resources
is doomed to failure except in a few trivial cases.
Actually, the same is true for medicine. Since we don’t have the same

kind of easily available resources, medical practice is still in the 1980’s if
we compare it to fixing computers. We’re still offline, so to speak. We can
fix humans, but the only knowledge we can use is what was hammered into
us at medical school, or that we can fortuitously remember from a more
recent CPE class.
That fourth step, the step that really makes a difference, is all about

gathering recent knowledge about a problem and its solution. That part is
missing entirely from the EHR systems we have today. Yes, those resources
are available elsewhere, but they are both hard to locate and hard to use
while examining and treating a patient, the very time when these tools could
make the most difference.

Let’s make another comparison: the architect’s productivity
has certainly increased with the introduction of email and soft-
ware that allows him to both write and maintain textual doc-
umentation, but the real advance of architecture is enabled by
computer-aided design software. Where is the computer-aided
design software equivalent for medicine?

Since our EHR systems are specified by civil servants, it’s only natural
that any provision for providing better healthcare, quicker diagnostics and
more consistent therapies, have been left out entirely. None of these things
matter to the administrators, so they simply don’t care to require any such
functionality.

You get what you pay for, or rather, you get what he who pays
for it asks for. And healthcare functionality is not part of that.

42 CHAPTER 5. HOW DOES THE EHR FAIL TO ASSIST US?

5.2 What should I do?

Building on the example in the previous section, we can translate that into
the steps that follow.

The first thing the software should help me with is a guideline on basic
stuff, such as:

• What history elements must I query the patient about?

• Which clinical signs and examinations are basic to most problems and
should be considered1?

• If I have a working hypothesis, the software should present me with
signs and techniques that can be helpful to confirm or exclude that
hypothesis. It should also present the major criteria for a diagnosis,
without drawing any conclusions automatically. For more on this, see
my discussion about active software (chapter 15).

5.3 How should I do it?

When I do a clinical examination or determine clinical signs, the software
should:

• List the signs and examinations related to this, their names and a list
of possible outcomes.

• Give me an informational page showing me how to perform the clinical
examination.

• Give me information about what the clinical examination results
mean and imply. Included here should be pointers to other exam-
inations that could be valuable to complement the result.

If I decide to order a diagnostic test in the form of lab tests or technical
diagnostics such as X-ray or ultrasound, the software should assist me as
follows.

• Show which diagnostics are available.

• Show what prerequisites apply to the diagnostics, and when they
shouldn’t be performed (contra-indications).

1“Considered” means just that; you should think about it, and do it if you think
you must. The point here is that if you don’t do something in a guideline, it should be
because you had a reason not to do it, not that you simply forgot.

5.4. WHAT DID I FORGET? 43

• Show the relative cost of the diagnostic, both in resource use and in
costs to the patient (radiation load, pain, risk for complications, time,
etc).

• Show where the test can be done, and what provider to send the order
to.

• Help me fill in a form for ordering the test, including all the elements
the intended recipient of the form has determined is needed for the
order.

• Helpfully propose the right documents from the records to include
with the referral.

5.4 What did I forget?

The application should point out to me what I forgot, such as:

• Which other diagnoses should I consider and exclude for this patient?
That is, present me with a list of “differential diagnoses”.

• Which lab tests or diagnostic tests have I forgotten to perform to
confirm this tentative diagnosis?

• Which therapy have I forgotten to start, or stop, for this diagnosis?

• Which reporting have I forgotten to perform?

As before, the system shouldn’t tell me what to do, only what to consider.
As a user, I should feel comfortable that I’ve considered all the angles and
that my choices are made not from ignorance or happenstance, but from
weighted judgement of all the elements.

5.5 History in context

When retrieving the history of the patient, the EHR system should present
a list of issues for the patient, and all notes, conclusions, examinations, and
other documents in the context of their respective issue.
Any notes, conclusions, or findings relevant to more than one issue should

be presented in the context of all those issues.

Part II

Current systems

45

SUMMARY 47

Summary

In these chapters, you will find an example of a current electronic healthcare
record system, and how we work with it. We’ll also describe which knowledge
support systems are available and make a few points about their usefulness,
or lack thereof, and try to identify what is missing to make them more
useful.
We’ll also analyze how a doctor works, and how she interacts with the

electronic healthcare record, including the limitations due to time and place
of use.
Finally, we’ll go into the information model that is used in current sys-

tems, and what’s wrong with it.
This part is mainly catering to the non-physician reader, providing the

background necessary to understand why our current systems don’t satisfy
the real needs of doctors, and by implication, what needs to change. Doctors
are also encouraged to read these chapters to see the assumptions and the
background I have when writing this text. Contexts vary, and yours may be
different.

Chapter 6

The goal of the system

What seems to be the goal of current systems? Are we happy
with how that turned out?

The goal of the system should be to help the healthcare professional do
a better job. Some functions of EHR systems support data entry and com-
munication; functions which are generally fairly well developed in current
systems. What is almost entirely lacking, however, is knowledge and pro-
cess support, as I described on page 39. Some simpler processes for nursing
can be found here and there, but nothing really significant is going on.
Note well: I’m not saying there are no knowledge or process support

initiatives out there, but what I am saying is that there are no significant
such initiatives that are fully a part of the EHR. There’s a great number
of such stand-alone initiatives, fragmented and each covering just a part
of the problem area. But even if there were wall-to-wall coverage in such
a tool, it’s still not a part of the healthcare documentation process. If
you have to interrupt the regular documentation process to go look up
something, and what you find does not automatically become documented,
it’s not only harder to do, it also does not enrich the documentation with
any reasoning resulting from the knowledge you looked up. It’s not enough
to define in the documentation what you do to the patient, it’s essential
that you document why, or why not, you are doing it, and that motivation
is lacking if the knowledge support is not integrated into the same tool as
the documentation.
One could argue that the EHR has only a documenting function, and

that the knowledge support function should be separately implemented

49

50 CHAPTER 6. THE GOAL OF THE SYSTEM

and provided, but that would by necessity imply duplication of effort and
redundant information. One could also argue, as I do, that the EHR has
erroneously been viewed and developed as a documenting tool instead of a
supporting tool. Current systems are also increasingly subverted to become
data gathering tools for management purposes instead of a tool for health-
care provision, due largely to a power grab of administrators in healthcare.
A nice illustration of how badly current systems are conceived, at least

from a practical healthcare perspective, came in an article celebrating the
joy of having someone else update the EHR:

“Without much fanfare or planning, scribes have entered the
scene in hundreds of clinics and emergency rooms. Physicians
who use them say they feel liberated from the constant note-
taking that modern electronic health records systems demand.
Indeed, many of those doctors say that scribes have helped re-
store joy in the practice of medicine, which has been trans-
formed — for good and for bad — by digital record-keeping.”1

If you introduce a new IT system to help a particular professional do a
better job, and one of the most celebrated advances in the use of that IT
system is having someone else manage it so you don’t have to come into
contact with it, your system is pretty much condemned as nothing but a
drag on the user. It’s hard to think up a more damning verdict than that.

1The New York Times, January 14, 2014, “A busy doctor’s right hand, ever ready
to type”, http://www.nytimes.com/2014/01/14/health/a-busy-doctors-right-hand-ever-
ready-to-type.html

Chapter 7

Legacy EHR Example: Cosmic

To show what I’m complaining about, let’s deconstruct a typical
current EHR system.

We’ll illustrate how current systems work by using examples from Cambio
Cosmic, a system the author has used quite a bit. The descriptions and
screenshots aren’t of the most recent version and some improvements have
been made since these were taken1, but fundamentally, it’s still working
according to the same principles. It’s important to stress that Cosmic is
certainly not the worst system out there; it could conceivably even be the
best. But it is definitely representative of the sorry state of systems we
have.
In the first screenshot (figure 7.1) we see a window showing the notes for

the current patient. At the top of the screen we have the demographics,
showing the personal number and name of the patient (a fake test patient).
The top right shows three buttons in different colors indicating different
kinds of warnings. The right large pane shows the contents of notes selected
from the left pane.
The left pane lets you select what to show in the right pane. It’s a list of

sources of documentation, typically different departments within primary
care or hospital care. It’s basically an organizational chart. County-owned
primary care is one section, while privately-owned primary care centers
have their own sections. Each speciality department, such as “urology” and
“orthopedics”, is grouped under a larger umbrella (such as “surgery”). This

1I would like to use more recent screenshots, but I very much doubt they’d let me
take them.

51

52 CHAPTER 7. LEGACY EHR EXAMPLE: COSMIC

Figure 7.1: Cosmic, viewing the notes in the record

must be wonderful for a civil servant to see, but is pretty much pointless
to the work of a doctor. Yes, we do want to know occasionally where the
patient has been, but generally we’re much more interested in what and
why, which this list doesn’t help with at all.
This left pane is a fantastic illustration of what’s wrong with current

systems. It’s pretty clear it was designed, or at least specified, by a lay
person imagining what he would like to see there if he was a doctor, and
then forcing doctors to see just that. But I very much doubt that a properly
informed and independent doctor would have chosen that view to occupy
such a dominating part of the workflow.
If you look at the top of the left pane in figure 7.1, you’ll see two tabs. The

left one says “Journal” (“Notes”), while the right one says “Skriv” (“Write”).
This is where you switch both panes over from reading to writing.
When in writing mode, the left pane changes to show all the “keywords”

or subtitles, you can enter information into (see figure 7.2). Whatever you

53

Figure 7.2: Cosmic in notes writing mode

write in the right pane is entered into the field contents of the keyword you
have selected on the left. At the top, above the entry field in the right pane,
you can select date, time, contact (encounter), and where you are. Again,
in this screen, you see an emphasis on “who”, “where”, and “when”, but not
so much on “what” and “why”.
What we also see is a structure determined by those keywords to the

left. This neatly shows what the developers have understood when we
say “structured records”, namely a text divided into sections according to
some fairly random list of discernible terms. That’s not what most doctors
would regard as a medically sensible structure. Anyone can slice any text
any number of ways without improving its utility. The “structure” we’d like
to see is a division into diagnostic plans, intentions, deductions, findings,
and the underpinnings of those. There’s nothing of that in Cosmic, or in
any other current EHR systems.
When creating a prescription in Cosmic, it looks like in figure 7.3. Clearly,

the entire working space on the screen is occupied by all the stuff you need
to prescribe a medication. The only other things that still appear are my
name, the patient’s name, and the contact date and time. That’s it. It’s
obvious that the developers didn’t see that prescriptions have anything to
do with notes, referrals, lab, or just about anything else in the records.
Or that the doctor would need to refer to anything else while creating
prescriptions. When seeing a patient for hypertension, for instance, it’s as
easy (or difficult) to prescribe a blood pressure lowering medication as it

54 CHAPTER 7. LEGACY EHR EXAMPLE: COSMIC

Figure 7.3: Creating a prescription in Cosmic

is to prescribe the pill, or morphine, or a drug against Parkinson’s disease.
The system is totally oblivious to what disease is being managed. It doesn’t
help and it doesn’t hinder (too much). If I send a referral, likewise the
system allows me, with exactly the same level of support or hindrance, to
send it to a cardiologist, a kidney specialist, or, why not, a psychiatrist, or
a hearing aid service. It has no preferences and is completely oblivious to
the medical context.
If you had created a system for photographers with this attitude and

domain implementation, it would contain functions for finding models, tak-
ing pictures, developing film, making copies, and invoicing clients, flushing
toilets, and clearing gutters, but the picture taking would have no relation-
ship to either models or film, the development task would involve bottles of
solutions, but no film or copies, while the invoicing would have no relation-
ship to anything else, making it as easy to invoice a photo shoot as a dozen
dead rabbits. No photographer in his right mind would buy an application
like that.
I have no screenshot of how you write referrals with Cosmic, but you’re

not missing much. It’s the same kind of thing, where once you start writing,
you see nothing else, and cannot look up anything else. The referral itself
is not connected to any particular disease or other documents, and is, for

55

all practical purposes, as integrated into the patient’s narrative as a dozen
dead rabbits.
I said it in the beginning of this chapter and I’ll say it again: Cosmic

isn’t worse than anything else out there, it may even be the best system of
them all. It’s probably pretty much representative of the current market.
Which, when you think of it, isn’t a very comforting thought.

Chapter 8

Knowledge support

What kind of knowledge support do we have today? Do we use
it? If not, why?

As doctors or nurses, we can’t possibly keep everything we should know
just in our heads. And even if we could, things change as science advances.
There is such an enormous amount of data we have to make use of, and an
ever growing avalanche of new findings. There’s no way we can drink from
this fire-hose and do real work at the same time.
Depending on how fresh the information is, and the level of detail, it is

available as original articles, review articles, textbooks, and/or guidelines.

8.1 Original articles

According to the Medline Fact Sheet1, there are more than 19 million refer-
ences to original articles in their database. Another 2,000 - 4,000 are added
daily. Even though everything we need to know in our daily practice is
in there somewhere2, this information isn’t useful in clinical practice in its
raw form. Researchers working on a particular topic have great use of this
resource, but for a clinician having a patient in her office, it’s practically
useless. You can’t just say to the patient: “I have to go read up on your
problem for a bit. Grab a coffee, and I’ll be back in a couple of weeks.”

1http://www.nlm.nih.gov/pubs/factsheets/medline.html
2I’m glossing over the practical techniques, the judgement, and the experience we

need as doctors, focusing solely on the scientific findings.

57

http://www.nlm.nih.gov/pubs/factsheets/medline.html
http://www.nlm.nih.gov/pubs/factsheets/medline.html

58 CHAPTER 8. KNOWLEDGE SUPPORT

At times, publications containing remarkable and important discoveries
are widely read by doctors, but this is just an infinitesimally small fraction
of the total published mountain of articles. And we can’t just ignore the
rest. Most of them form the basis of future diagnostic and therapeutic
principles, so we have to use a system to reduce them to a more digestible
form.

8.2 Review articles

Well-informed authors regularly write reviews of the most important pa-
pers in their field and publish those in the same type of medical journals
where the original papers are usually published. These review articles allow
non-specialist doctors to get a good overview of a particular subject and
the current state of knowledge about it. While writing these reviews, the
authors use their best judgement to sift through the underlying original
articles to bring forward the most relevant and trustworthy findings, so the
rest of us don’t have to do that.
These review articles are still too detailed and specialized to be directly

useful in patient care in general, but are often just fine as a tool to keep
up in a field in which the doctor sees a lot of patients, but not necessarily
does research.

8.3 Textbooks

Textbooks constitute the next level up, and the quality of the information
is similar to reviews, but as a collection of related subjects for a certain
medical speciality.
While original articles and review articles presume the reader is already

familiar with the subject, the textbook does not, and starts from basics.
Textbooks are rarely useful for a practicing doctor, except as a reminder
of what she learned in medical school. Additionally, text books are much
too expensive to buy just to keep up with the science. They’re also not
updated quickly enough for that use.

8.4 Guidelines

Guidelines are based on original research and reviews, and turn that content
into practical use advice. If there’s a study that says it’s advantageous to
the patient to apply therapy X, the guideline recommends therapy X, at
least if it’s available in the relevant region.
In theory, guidelines are entirely based on science, the interest of the pa-

tient, and the resources available, and are short and sweet enough that they

8.4. GUIDELINES 59

can be read, understood, and applied while the patient is present. In prac-
tice, however, these guidelines are often influenced by considerations that
have nothing to do with the patient’s immediate interest, but by political
and economic incentives. If those economic considerations are of the kind
that optimizes healthcare in a larger perspective, it’s reasonable to accept
that, but manipulative bureaucrats sometimes compromise the integrity of
these motives to such a degree that guidelines are getting a bad rap as
being a tool for civil servants to control medical professionals, rather than
a tool to improve the quality of the direct patient work. If we can’t trust
the motives behind a guideline, we’re not likely to seek it out and use it,
either.
Somewhat unexpectedly, it’s hard to find useful guidelines in English,

but one decent example can be seen at a site loosely connected to Oxford
University (according to the text on the site). The guideline chosen for
the purposes of this discussion, is their guideline on the work-up and man-
agement of chronic heart failure, and was found at this URL3, which, of
course, has a good chance of not existing anymore once you try it. That’s
the internet for you.
This guideline is in the form of a PDF file and summarizes the causes,

the diagnostic procedures, and the recommended treatments stratified into
levels of seriousness. The guideline document includes text, flowcharts,
tables, and forms. Even though the information is solid and useful, the
document is a mashup of different kinds of functionality, all squeezed into
one single document, severely impacting its practical usefulness. Let’s look
at a few aspects of this guideline4 and its construction, and it’ll become
clearer just what I mean by that.
In figure 8.1 we see the beginning of the guideline, where there is a short

overview of the basic diagnostic procedures. As doctors we’re supposed to
know all this by heart, but we don’t always remember every detail. It could
be too long ago, too detailed, or we can have a bad day, so this is excellent
as a brief reminder.
Figure 8.2 shows a part of the therapeutic discussion from the guideline.

Again, it’s terrific as a reminder, but it is so much more than that. It’s also
an up to date reminder, (or it should be5), potentially alerting us to changes
in recommended therapies caused by new discoveries that may have shown
newer agents to be more effective than older agents, or shown some agents
not to be as effective or free of adverse effects as we thought. In other
words, however well you know past recommendations by heart, checking

3http://static.oxfordradcliffe.net/med/gems/CHF.pdf
4The CHF guideline was reproduced with permission from Dr Chris Bunch and Dr

Jeremy Dwight, NHS Oxford, UK.
5It’s absolutely essential that the guideline includes the date it was last updated, so

that we can judge its actuality, but this guideline does not. That is a serious shortcoming.

http://static.oxfordradcliffe.net/med/gems/CHF.pdf
http://static.oxfordradcliffe.net/med/gems/CHF.pdf

60 CHAPTER 8. KNOWLEDGE SUPPORT

Figure 8.1: Guideline for management of chronic cardiac failure, diagnosis
and investigation.

8.4. GUIDELINES 61

Figure 8.2: Chronic cardiac failure, part of the treatment description.

62 CHAPTER 8. KNOWLEDGE SUPPORT

through this list can always teach you something new and bring you up to
date quickly and easily.

Figure 8.3: Summary table with literature references for chronic cardiac
failure.

In figure 8.3 we see more or less the same information, but in tabular
form, with indications of trustworthiness in the “evidence” column, and with
literature references in the last column. That last column is essential, since
it ties the recommendations to the underlying original data. The guideline

8.4. GUIDELINES 63

should never be the expression of just the author’s personal preferences, it
must provably be based on neutral scientific evidence, and that’s where this
last column comes in. Without an explicit base in original scientific work,
the guideline loses most of its value.
Not everything in a guideline can be based on explicit scientific material,

however. Some of it is based on generally agreed good practices, but it’s
important that those parts of the advice in the guideline are clearly rec-
ognized as such. The reader should always have the ultimate say in how
much authority she lends to the guideline in the individual patient case,
and should not have to take anything in the guideline on faith, or as a
result of belief in the authority of the author alone.
When we’re working through a guideline, in particular the recommenda-

tion parts, we always weight the recommendations against the totality of
the patient we have in front of us. Some recommendations can’t be followed
due to other diseases the patient has, personal preferences of the patient,
and many more factors. It’s impossible, and unproductive, to even attempt
to include all those considerations into a guideline. If we as doctors weren’t
able to take those considerations into account ourselves, we shouldn’t be
doing this job, anyway.
But here’s a problem. Reading the guideline and selectively applying

the advice based on considerations that are not part of the text leaves
no trace in the medical record. While the user is reviewing the guideline
and reacting to it, she is performing the real essence of her profession,
and is taking the important decisions about the patient’s care, but it’s not
persisted anywhere. She can’t scribble on the screen, striking through stuff,
or underlining, adding checkmarks, etc. The guideline is her worksheet, the
very embodiment of her reasoning, and she can’t save it? That’s ridiculous!
In other words, however great the content of the guideline is, the form is
wrong. It shouldn’t be presented as a read-only webpage or even paper
document, unless the user can scribble on it, modify it, and make it part
of the patient’s ongoing record.
The form we see in figure 8.4 only underlines this fatal flaw. The form is

just sitting there, totally passive. Yes, the user can print it out and fill it
out by hand6. The idea is fine, providing us with the right form, but the
delivery is deeply flawed. This form should be different according to the
organization and geographical location of the user, be sent automatically
to the destination, become part of the patient’s record automatically, and
become connected to the reply, once it arrives. Clearly, this is too much
too ask of a plain dumb PDF file on a website.

6Since the death of the typewriter, there’s no other way to fill in forms, really. Unless
you count spending hours installing and cursing Adobe Reader to kingdom come, for
the pleasure of trying to hit those fields, then going ballistic as it can’t save the filled in
document anywhere, least of all in the medical record.

64 CHAPTER 8. KNOWLEDGE SUPPORT

Figure 8.4: Referral form for chronic cardiac failure.

8.4. GUIDELINES 65

Figure 8.5: Flowcharts for investigation and management of chronic cardiac
failure.

66 CHAPTER 8. KNOWLEDGE SUPPORT

In figure 8.5, we see the final page of the guideline, with a neat flowchart
representation of the management of chronic heart failure. This representa-
tion is great for a review of the guideline by the user, but since it’s entirely
passive, it has no immediate use in any software implementation.
There is a more philosophical problem with the flowchart representation,

namely that it invites to being implemented as a process in medical records,
and that would be tragic for two reasons. First, we have the “keyhole” effect
discussed in section 15.1, that is an incentive for the user to hunt around
in the program, answering questions in different ways just to see what
conclusions and recommendations come out of the software. The other
reason is that it is an invitation to lay management to try to automate
away the need for doctors. The flowchart, after all, seems to indicate that
the entire decision process can be reduced to just a few input factors and
a few decision branches. Lay people tend not to see what we’re using our
training and experience for, once it’s ostensibly reduced to a flowchart. In
short, I think the flowchart here has more potential for damage than for
good use.

8.5 Continued Professional Education

In most countries, doctors must follow a minimum amount of continued
professional education per year7. The idea is to bring us up to speed, at
least in our own speciality. This idea falls down when scrutinized, though.
The number of diseases we manage as doctors is too large to be com-

prehensibly covered in any particular year, so a choice must be made as
to which subjects are covered. These choices have little relationship to the
actual case load of each participating doctor, as a large part of the selection
of cases is based on random factors. It’s left largely to chance if you will
receive training in any one particular subject with any regularity.
Also consider how much you can possibly remember from an education

session, and for how long. The information is at the top of your brain,
and in a useful state, only for a short time, maybe a couple of weeks at
the most. After that, it sinks down into the same primordial ooze all
the other knowledge from university days bubbles around in, and becomes
effectively almost useless. Any patients with that disease you see while still
having the information fresh in your mind will benefit, and possibly make
the information lodge more permanently in your memory. But how many
Parkinson patients will you see in the three first weeks after that one session
on Parkinson you had last year? One?

7Sweden has no such obligation. I don’t know what to think of that, really.

8.5. CONTINUED PROFESSIONAL EDUCATION 67

I’m not entirely alone in this pessimism. A paper from the Wellcome
Trust8 says:

“The researchers estimate that the time lag between research
expenditure and eventual health benefits is around 17 years.”

That number, 17 years, is pretty much the midpoint of the average career
for a doctor, leading me to my own informal conclusion:

Nobody learns much of anything after graduating from medical
school. Continued professional education, in practice, makes no
useful difference.

Of course, there are exceptions to this very pessimistic rule. Any training
in manual dexterity, what is called “craftsmanship” in section 2.4, is best
taught using in-person meet-ups in clinics and operating theaters, or at
nice hotels or spas with excellent restaurants and bars. But for theoretical
knowledge, it is very doubtful this is an effective method.

8http://www.wellcome.ac.uk/stellent/groups/corporatesite/@sitestudioobjects/
documents/web_document/wtx052110.pdf

http://www.wellcome.ac.uk/stellent/groups/corporatesite/@sitestudioobjects/documents/web_document/wtx052110.pdf
http://www.wellcome.ac.uk/stellent/groups/corporatesite/@sitestudioobjects/documents/web_document/wtx052110.pdf
http://www.wellcome.ac.uk/stellent/groups/corporatesite/@sitestudioobjects/documents/web_document/wtx052110.pdf
http://www.wellcome.ac.uk/stellent/groups/corporatesite/@sitestudioobjects/documents/web_document/wtx052110.pdf

Chapter 9

How is the record created?

We’re entering data into the systems, but how and when do we
do that?

Before designing an interface, and even before analyzing the meaning of
the entered data, we have to know how and when the user creates the input.
It is the physical environment and context around the place and time of
input that largely decides the character and value of the data produced.

9.1 The input method

There are several ways data can be entered into the medical record. There
are three major workflows, each with their own advantages and disadvan-
tages.

Writing afterwards

Some doctors take short handwritten notes during the encounter, then tran-
scribe those into long form notes in the medical-record system after the
patient leaves. This implies that the doctor has some time alone between
patients, or that she spends time at the end of the day transcribing notes
for several patients.
Usually, referrals, reports, and attestations of different kinds are written

in that same period, after the patient leaves. Some doctors write referrals
and attestations with the patient present, but leave the dictation or writing
of the record for after the patient has left.

69

70 CHAPTER 9. HOW IS THE RECORD CREATED?

Dictating afterwards

In this workflow, the doctor also takes some brief notes during the en-
counter, then arranges his thoughts and proceeds to dictate the notes after
the patient has left, or possibly after hours. It’s easier to mix up the history
and findings of different patients if the dictation is all done at once like this.

Simultaneous writing

In this workflow, the doctor takes notes during the actual encounter, as the
information is provided and develops.
This way of working is surprisingly easy on doctor and patient. As the

doctor reacts visibly by typing to almost everything the patient says, the
patient feels he is being taken seriously, is less prone to repetition, and also
becomes more succinct and to the point. That’s all good.
The major obstacle to this is that the doctor needs to learn touch-typing

to be able to maintain eye contact with the patient, at least part of the
time. But that isn’t hard to achieve with a little training. It’s orders of
magnitude easier to learn to type well, as compared to learning to become
a doctor in the first place.
Another advantage of writing while the patient is present is that if any

point is missing or unclear in the narrative, it is much more straightforward
to get clarification of these points as the patient is still there to help out.
Finally, since all note taking and writing of referrals is done before the

patient leaves, there is no work left to do in the interval between patients
or after hours. The patient also gets to be with the doctor for a longer
period than if the writing or dictating needs to be done in his absence.
Curiously, in some countries doctors almost always write the record them-

selves, while in other countries it’s rare. It seems to be a cultural phe-
nomenon.

Obstacles to simultaneous writing

The major obstacle is the lack of typing ability in doctors. This can and
should be overcome with suitable incentives and training1.
Another more serious obstacle is the poor design of most EHR systems

today. In most of them, it is impossible to refer to all the source documents
you need while creating typical output. Often the editor window you use to
write notes is the same window you use to look up older notes. The same

1In Sweden, at least, I’m getting a lot of pushback on this from several reviewers
who can touch type but are adamant that it’s still better not to be distracted by typing
while the patient is present. It would be interesting, useful, and entirely feasible, to do
an observational study on this, but I’m not holding my breath.

9.2. THE DIFFERENT RESULTS 71

happens with referrals; while writing a referral you can’t go back and read
another referral, since these functions utilize the same window. You can’t
save a referral as a draft to go look something up, so you need to throw the
draft away, go look up something, then start over. Adding insult to injury,
you can’t reuse an earlier referral, modify it and send it again. Since one of
the most frequent workflows you need to handle is re-composing a referral
that was bounced back from a referee2, these defects combine to form a
perfect storm of aggravation.
The systems are much easier to use if you either read documents or write

them, but not both at the same time. It is also often extremely complicated
to copy existing information into new forms and notes. Copy and paste is
often poorly implemented, and even if it works, it’s a very cumbersome
method. If you dictate your records, this is not a problem, since the doctor
then reads, while the secretary only needs to write while listening to the
dictated recording, which explains how this terrible design came into being.
The systems are in effect designed for a workaround; having a secretary type
the medical record is a workaround for bad designs and defective medical
records, and the medical-record system vendors keep designing for that
workaround, perpetuating the problem.
The way the EHR systems are designed needs to be changed to take

simultaneous writing into account. This, again, is probably different ac-
cording to the culture of the country you’re in.

9.2 The different results

If the notes are created after the actual encounter with the patient, the
contents of the notes will be different from those that could have been
written during an encounter. The reason for this is that in the first case, the
notes are an after-construction, where findings are already filtered through
the conclusion the doctor reached. It’s, in other words, colored by prejudice.
As an example, we’ll take the following scenario. If the doctor listens to a
patient telling her about his sore right knee in full detail, and the patient
also mentions he had a rash and a fever two weeks before his knee acted up,
the rash and the fever will probably not end up in the patient history notes
that the doctor writes down, unless she sees a connection between that and
the sore knee, the principal complaint. There is no way for another doctor,
or a computer, to diagnose any problem with the knee that also involves
the rash and fever, by analyzing the notes only. The information needed to
do so will simply not be there.

2Yes, a “referee” is someone in black and white stripes wielding a whistle, but it also
means a person receiving a referral. Look it up.

72 CHAPTER 9. HOW IS THE RECORD CREATED?

If, on the other hand, the doctor writes down the notes while the patient
tells his story, she’ll probably write down the part about the rash and the
fever long before reaching a conclusion and a diagnosis that does not really
involve the fever and rash. As long as the doctor doesn’t go to the trouble of
going back and erasing that part of the history, intentionally screwing with
the veracity of the record, the findings will indeed remain part of the record
and may in the future lead to a different conclusion by another doctor or a
machine, from the same data.
The greatly increased veracity and usefulness of the medical record in this

last scenario, is a strong argument for having the doctor create the record
while the patient is telling his story, and during the clinical examination,
not afterwards.

It’s of ultimate importance for the objectivity of the data that
the record is created as early in the process as possible, during the
actual encounter. The only method that can be usefully employed
when the patient is present is typing, or dictating, if the quality
of the doctor-patient relationship allows it.

Chapter 10

The information model

Current systems are built on a model of the clinical reality.
What does that model look like? Is it correct?

So, how does the data model1 look in the EHR, and what can we do to
improve on it?
Legacy EHR systems generally provide a couple of major categories under

which they sort the documents belonging to a patient. These categories are
typically:

• Daily notes.

• Referrals and replies to referrals.

• Radiology orders and protocols.

• Lab orders and results.

• Prescriptions.

• General correspondence.

• Forms of all kinds filled in for the patient.

Let’s first look at how these legacy systems relate these categories to
each other. Basically, their data model shows the patient as the top, or

1“Data” is “information” in a form that a computer can process. “Information” is
derived from the “data”.

73

74 CHAPTER 10. THE INFORMATION MODEL

root, element2, and we then have a list of encounters, and another list of
documents. If we’re lucky, the EHR system relates referrals, prescriptions,
notes, and other documents to the encounters where they were created, but
in many systems even this is too much to ask.
Since the notes from one encounter can relate to more than one problem,

while documents such as referrals or prescriptions relate to one particular
problem (there are exceptions), the relationship between encounters and
documents, if it exists at all, is wrong and misleading. Additionally, doc-
uments often arrive outside the context of encounters, such as replies to
referrals.
In fact, this organization into separate stacks show a frightening similar-

ity to my Belgian predecessor’s stacks I described on page 35. We don’t
seem to have progressed much beyond that, except we now have a signifi-
cant number of stacks per patient, where there were only two stacks for the
entire practice previously.
For the rest of this discussion, just to keep the diagrams simple, I’ll limit

myself to four stacks per patient, namely: notes, lab, X-ray, and referrals, as
in figure 10.1. The first stack with the notes should really be represented
as several stacks if we’re talking about large unified systems, since each
speciality has its own stack of notes, but still largely share the other stacks
with lab, X-rays, referrals, etc, with each other. I’m almost starting to long
back to simpler times when we had just two stacks in my Belgian practice.
Yes, they were larger, but there were just the two, and they made a twisted
kind of sense.

Figure 10.1: The “a few stacks” oriented architecture of legacy EHR systems

The legacy EHR systems have another dimension as well: time. Each of

2In computer science, “trees” have their “roots” at the top. Go figure.

75

the stacks is organized in reverse time order, so the most recent documents
or notes are uppermost (again, just like my Belgian predecessor did it).
If we expand the stacks in figure 10.1 along the time axis, it will look
something like figure 10.2.

Figure 10.2: Legacy EHR document architecture

There is nothing explicitly connecting any particular documents in one
stack with related documents in another stack. In other words, if we as user
of this system try to gather all the documents and notes that are relevant
to a particular problem, it quickly degenerates into an error prone and
highly frustrating stack-walking procedure. Let’s assume that the patient
records in figure 10.2 contain information on three diseases, one of which is

76 CHAPTER 10. THE INFORMATION MODEL

hypertension, which we mentioned in two notes, and for which we’ve done
two lab orders, a chest X-ray, and two referrals (one for fundoscopy, the
other to a vascular lab). In figure 10.3 I’ve marked the documents relating
to hypertension with a crosshatched pattern.

Figure 10.3: Just that one disease is here, here, and here. . .

The only way to locate the relevant notes is by reading through the stack
of notes, top to bottom. Then the only way to locate the other documents
that may or may not be mentioned in those notes is by searching through
those other stacks from top to bottom. And once you’ve done that, and
have them all neatly arranged inside your head, you just throw it all away
again, since there is no way to persist the relationships you just found. The

77

next time you go through the same process, there’s no guarantee you’ll
come up with the exact same selection of documents from the different
stacks, since it all comes down to how attentive you are and how selective,
so there is no guaranteed consistency in your view on the record. It’s largely
a matter of chance. The more documents there are in the record, the less
reliably will you be able to find relevant documents.
Having the documents ordered according to the type of document made

sense before we had IT system and it was all on paper, since that document
could only be in one place3, and if you had to choose between filing that
X-ray among other X-rays, or in a folder “hypertension”, it made slightly
more sense to file it under “X-rays”. Not much more sense, just a little bit.
But now, when the number of copies of a document means nothing, it

makes no sense at all. An X-ray of the thorax taken during workup for
hypertension has its primary meaning as an exemplar of a study of the
hypertension, not as yet another X-ray. In other words, the fact that it
is an X-ray is just an indication of a method, not of meaning. What we
actually were looking for was a possible enlargement of the heart, and to
determine if that was present, we used an X-ray. We could just as well have
done a cardiac ultrasound, or an ECG, but we did an X-ray.
Now, what happens in the head of the doctor when he reflects on the

records and wonders if the patient has a cardiac enlargement? What we
would prefer to do is go look in some spot labeled “cardiac enlargement”,
and find the answer: “no, as shown on thorax X-ray”, or maybe “no, as
shown on ECG”, or even “no, as shown on cardiac ultrasound”. But with
the stack-oriented EHR systems of today, instead I must assume4 that the
possibility of cardiac enlargement has been verified or excluded using either
thoracic X-ray, cardiac ultrasound, or ECG, and then go searching through
each of those three stacks to look for any trace of such an exam5. Even
worse, if I didn’t know of BNP, a new lab test for cardiac failure, I would
not go looking in the stack for lab results after this, and would miss it.
What I really want to know is if cardiac enlargement or failure has been

verified or excluded, and I really don’t care how. But what I’m forced to do
with these systems, is try to read the mind of other doctors, then backtrack
from there.
Most doctors simply repeat findings in the notes to clarify how they drew

their conclusions, but this is a workaround for an incredibly poor system

3Unless we copied it, but that was too much work and too expensive.
4That assumption builds on knowledge entirely outside the records, such as conven-

tions in my area, or that the doctor who did the workup came from the same university
as me, or that we both ought to be equally up to date, or out of date, so can be expected
to use similar methods, etc. There’s a lot left to chance, as you can see.

5Unless we cave under the pressure and ask the patient, but that defeats the purpose
of the medical record, doesn’t it?

78 CHAPTER 10. THE INFORMATION MODEL

design, and it shouldn’t be necessary.

Part III

A consistent design

79

SUMMARY 81

Summary

_In the foregoing, we’ve discussed what the problems in healthcare related
to IT are in general, and how current EHR systems attempt, but fail, to
solve them. We’ve seen a number of ways these systems are badly conceived
and fail at their task.
In what follows, we’ll try to reason out what we need, and how we could

go about achieving that. It’s clear that we need more than one thing, and
that there are a number of aspects of healthcare, that each could use its own
solutions.
When we work with software applications in general, there are distinct

aspects of the application we can and should discuss in isolation from each
other6.
One such aspect is the composition of the data, what form the knowl-

edge about the patient takes. Is it numerical or textual? Is it structured
hierarchically, or by references, or relationally, or a mix of these patterns?

6In this discussion, the developers among the readers will recognize the Model-View-
Controller pattern, and a bit of Presentation-Business-Data layer abstraction. Good for
you.

Chapter 11

Necessary, but not sufficient

Any solution must satisfy this short list of conditions, else it
won’t be used. At least, not for long.

There’s a number of specific requirements on any system that has a
chance of becoming useful and used in practice. Below I’ll briefly discuss
each of these core features the system must have.

11.1 Effective use

The system must help the user do a better job, do it quicker, and with less
errors. The difference must be clear, the payback immediate. The most
obvious actions to be taken for a particular issue should be presented first,
and all details that can be taken care of by the system should be done
automatically.
Finding the right issue, or the right set of issues, to consider, should be

highly automated. Just like an experienced ER nurse who knows which
instrument the surgeon needs next, the system should serve up the most
likely information and tasks before the user needs to go searching for them.
The system should be an assistant to the user, not just another chore.

11.2 Context sensitive

The system must be “aware” of the issue at hand. It must adapt and
change its content and mode of presentation according to the set of issues
that the patient has, and which issues are most important at any particular

83

84 CHAPTER 11. NECESSARY, BUT NOT SUFFICIENT

point in time. The system must therefore filter out everything but the most
important, and most likely, actions or inputs. At the same time, all possible
actions or inputs should be reachable in some fashion, of course.

11.3 One single system

Legacy EHR systems are a serious block around the ankle for users, and
any new system should replace it, not add another system to the side of
it. The new system should assist the user, and produce any documentation
that is needed for other purposes. The new system should be the only
system the user needs to interact with, and it should form the bridge to
any information or functionality it cannot provide itself. There should be
one focus, one central management point, one place to find it all, even if
some of the content originates in other systems.

11.4 Under the user’s control

The knowledge based content (the “issue templates” in my terminology)
should not be implemented as code. Instead, these must be in the form of
files that any user can create or modify for her own purposes. We can’t have
a staff of programmers and a development process between any changes in
medical practice and the actual implementation of those changes in our
tools.

11.5 Derivation of issues

The “issue templates” that determine the diagnostic criteria and therapeutic
actions in the tool, should be derived from parent templates and allow
child derivations. What this means in practice, is that any user can take
a preexisting issue template, adapt it to her own processes and knowledge,
and still keep a connection to the template she derived from. This allow
the easy spread of new knowledge for a certain “issue” to all users of the
original or derived template.
Example: if an institution has derived their own variation of the issue

template for “hypertension”, their specific issue template should still be
updated automatically if a country-wide change of a first choice therapeutic
agent is rolled out.

11.6 Cover the full process

The system should cover the full process from initial findings, to a short-
list of likely issues, and to guidelines for therapy. There should be full

11.6. COVER THE FULL PROCESS 85

interaction and feedback from each of those stages to the other stages.

Chapter 12

The phases of the clinical process

Observing a doctor working. This is how it looks.

In what follows, we’ll discuss the different steps and actions in the clinical
process one by one. For each step, we’ll first describe the step as such,
independent of any IT systems. Then we’ll describe how current EHR
systems help or hinder this step, and finally we’ll go through what future
systems could and should do.

12.1 Clinical encounter

The encounter can be an ambulatory visit to the doctor, a phone call, a
five minute administrative time set aside to review reports for a patient.
It could also be a visit at the patient’s bed during rounds. There isn’t
that much to discuss about the encounter as such, since it mainly consists
of a coming together of doctor, patient, at a certain place and time. The
encounter could be said to consist of the elements described in the following
sections.

How it is

In current systems, the encounter is the main element in the medical record,
as far as the notes are concerned. It is reasonably clear what was done

87

88 CHAPTER 12. THE PHASES OF THE CLINICAL PROCESS

during an encounter1, but it’s much harder to find what was done in relation
to a particular issue if you don’t know when it was done or by whom.
The encounter is related to a doctor or nurse and a place, so if you’re

mainly interested in that information, it’s there. From a medical stand-
point, however, this information is practically useless.
Some systems record the creation of referrals and prescriptions right in

the notes, but even then, they rarely link directly to the created documents.
In other systems, that information isn’t in the notes, so it is left to the user
to look for documents with the same date and time as relevant notes to try
to piece together what really happened2.

Even if this all works fine, which it doesn’t, it helps very little in finding
the notes relating to a particular issue, which is really all that matters.

How it should be

The clinical encounters should still be ordered chronologically in future
systems, but that is a view that will rarely be used. A better organization
is to have notes, documents, results, and prescriptions, ordered according
to issue. If I’m opening up the records for a particular patient, the very
first thing I should see is a list of issues, such as “diabetes”, “hypertension”,
“headaches”, and so on. If I select one of those issues, I should see a list of
plans, notes, documents, results, and prescriptions related to the selected
issue.
If I, on the other hand, select a document, a note, or a prescription, I

should see a list of issues related to that information element, and through
that list of issues, I should again be able to see related information elements,
as described in the preceding paragraph.

12.2 Overview of patient history

As a doctor seeing the patient, the main things I want to know about the
patient and the encounter are:

• The main problems the patient has or has had over the years.

1“Clear” for arbitrary values of “clarity”. What is often not clear are which orders
were created or prescriptions written.

2As if that horrible state of affairs wasn’t enough, at least one system I know has
a tendency to show the wrong date and time in either or both of those places (notes
and documents), making it well nigh impossible to figure out how they relate to each
other. That same system, by the way, also records users differently in medication lists
and notes, the former with a user login short code, the latter with the full name. In
neither place can you see both forms of user identification, so it is impossible to match
up notes and prescriptions. That reflects some amazing dedication to screwing things
up.

12.2. OVERVIEW OF PATIENT HISTORY 89

• Which problem or problems we as doctors need to consider and man-
age today.

• Which other problems are of importance when considering the current
encounter-related problems.

• Which plan is being followed for each of the problems and where those
plans are coming from.

• What has been done and decided so far concerning our encounter-
related problems.

• What has happened that isn’t in the record but is relevant3. These
are the things the patient should be able to tell us about.

How it is

In current systems, there is nothing but the “history” and the “assessment”
fields in the notes to reconstruct the patient’s history, unless you count
going through all referrals and prescriptions and trying to deduct from
those what could have initiated them.

Figure 12.1: A typical entry in a classic EHR

History fields are present in each encounter note, so gathering this infor-
mation implies that you have to scan through all the notes, or all the notes

3Note that I carefully avoid saying “since the previous encounter”, since all too often
even important events that have happened before the previous encounter are not in the
record, and only the patient can inform us of them.

90 CHAPTER 12. THE PHASES OF THE CLINICAL PROCESS

you can stomach, and mentally assemble it all into a consistent whole. If
the record system contains notes from a number of different departments,
you can choose to go through them separately or all together, if the system
gives you that choice. Assuming you’re allowed to scan through the notes
for other departments without specific authorization and/or reason.4

During most encounters, we simply skip this step, hoping we didn’t miss
anything important, but sometimes we painstakingly have to assemble a
consistent story for some particular purpose, like a referral or a report to the
health insurance, and then it’s convenient to copy that fairly comprehensive
history into the record for later use. The problem, however, is that there
is no place to put it except inside the current note, which means that this
very useful summary slowly recedes over the visible horizon as later notes
accumulate. The only way to keep it current is to keep copying it over to
more recent notes, and updating it as you go along, but this is, even at
best, a really horrible solution. Some systems have a function to copy old
history notes over to the current note, but that’s a really terrible idea, since
it in reality means a large amount of duplicated information, which doesn’t
get updated anyway. It simply results in outdated information being added
under a current date. You could call it “automated misinformation”.

How it should be

If there is a list of issues, aka health problems, over the years, this in itself
constitutes most of what we’re looking for in a “patient history”. The next
level down in detail can be found by opening any particular issue and seeing
only the notes and documents referring to that one issue. Each issue should
contain the plan used to diagnose and treat that issue, with a reference to
the source of that plan.
For some issues, a timeline can be a good visualization. For example,

the long term parameters and therapy of diabetes have something to gain
from a well-designed timeline presentation. Other examples are recurring
ear infections in children, or vaccinations, or the followup of pregnancies.
But there are also a lot of examples of issues where a timeline doesn’t
make much sense, such as surgery for hemorrhoids or ingrown nails, or a
pneumonia. Since the utility of timelines is so heavily dependent on exactly
which issue we’re talking about, it should be a part of the issue template

4Since we built up a picture of the patient’s history by scanning the notes, it’s obvious
that we don’t really know what we’re looking for until we’ve found it. So we often can’t
have a known reason for scanning a particular set of records, even though the reason
for doing it would be clear if and when we could see those records. Interesting circular
reasoning going on here, and the reason for that is that the record is oblivious to the
concept of “disease” or problem, so it can’t present any information in a cohesive and
relevant frame.

12.3. CLINICAL EXAMINATION 91

set for those issues. This has the added beneficial characteristic that the
timeline can be designed optimally for each issue type.
There is also the possibility that we’d like to see all issues in an overview

in the form of a timeline, which could have some utility. In this case, the
timeline will be much simpler and not convey much information about each
particular issue. Some issues will not be there at all, not in a useful form
at least. Just think of congenital diseases like sickle-cell anemia. Yes, each
complication of sickle-cell anemia may occur there, but the sickle-cell trait
itself can’t usefully be represented.
For some issues, an anatomical overview could also be useful, such as for

a multiple trauma, where damaged areas and organs can be highlighted. In
rheumatic polyarthritis, an anatomical drawing with each affected articu-
lation highlighted can also be very useful.

12.3 Clinical examination

The clinical examination consists of a number of manual actions to check
on signs and findings. Examples are:

• Listening to heart sounds.

• Listening to lung sounds.

• Palpating the abdomen for masses, tenderness, percussion5.

• Examining ear drums, eyes, throat, etc.

• Measuring blood pressure.

• Checking reflexes.

Exactly which clinical examinations we do depends on what we’re looking
for. If the patient presents with an upper respiratory infection, the exam-
ination is directed towards respiratory elements. If the patient comes for
a yearly checkup of diabetes, we have another set of clinical examinations
we ought to perform. Weed et.al argues [6] convincingly that the initial set
of questions and clinical examinations should be very exhaustive, so “what
we’re looking for” should be seen as very broad and inclusionary.
Every doctor knows how to do the most common examinations like using

a stethoscope to listen to heart sounds, palpation of the abdomen, and
ear inspection, but other examinations are harder to remember how to do.
Examinations for shoulder problems or nervous system diseases can be quite

5Percussion: tapping and listening to the sound. This can tell you the size of the
liver, fluid or air in the intestines, and more.

92 CHAPTER 12. THE PHASES OF THE CLINICAL PROCESS

intricate and for these the doctor may need reference material to remind
him of which examinations he should do, and exactly how to do them and
what they mean.

How it is

In current systems we usually have only a template containing a list of
keywords. In some systems you can add keywords or sets of keywords on
the fly. If you’re seeing a patient with diabetes for a yearly checkup, you’d
add the set of keywords for just that. But notice that even if you add that
set for diabetes, the system doesn’t really take note that you’re doing an
encounter for diabetes, and doesn’t save that fact in any useful way, even
though that information is clearly available from the user.
Other systems (or often the same systems, but configured differently)

instead have a single or a very few templates with keywords. Since you
can’t easily add in keywords on the fly, these templates tend to be huge,
and to include all kinds of keywords that are only rarely used. Often only
one in ten keywords are used during an encounter, so much so that the
hunting for the right keyword to enter information becomes a significant
time consuming task in its own right.
Both kinds of systems usually only save keywords that do contain entered

information into the notes, avoiding saving long lists of empty keywords.
As to how information is entered into the keyword data field, there is

very little attention paid to that. Most fields are plain text, with a few
fields having a numeric type, which in general is more hindrance than help.
Some systems allow for graphing of values over time if the field is numeric,
but this has very limited utility since it’s done for so few fields. At times it
could be useful, such as showing a graph of HbA1c values over time for a
diabetic, but this has then to be done by switching over to the lab results
module, then picking out the HbA1c value and graph it from there. It’s
not a part of the clinical overview for diabetes, simply because no such
overview exists.
Another aspect of the use of the IT system in conjunction with the clinical

examination is the office layout. A physician’s office usually contains a desk
with the computer on it, a chair for the patient, and an examining table.
These can be arranged such that the computer can be used while at the
desk, or easily reached while examining the patient on the table or gurney.
But in some offices, the examining room is physically separate from the
office, and there is no computer in the examining room.
If the examination is done in a room without a computer, the doctor is

back to either memorizing his findings or taking notes, the exact workflow
we try to eliminate. If the examination room does have a computer, we’re
still out of luck, since we usually can’t log in to the same EHR system from

12.3. CLINICAL EXAMINATION 93

two places with the same user, either because that wasn’t a part of the
design criteria, or because we need a smart card to log in, and it can only
be used in one machine at a time.

How it should be

Since the choice of suitable keywords depends on the healthcare issue we’re
seeing the patient for, it becomes natural to connect the issue to a list
of clinical findings. Since national registry, and communicable diseases re-
porting also depend on the healthcare issue, it is obvious that those clinical
findings should also be determined by the issue.
Regardless of the reason the user defines the issue, be it in order to

get the list of clinical findings right, or to do reporting, or to maintain a
correct patient overview, the end result is the same: a descriptive issue in
the history overview and the right clinical findings for the clinical notes
and the reporting.

The “healthcare issue” is such an obvious integrating element
that it is hard to conceive how systems continue to be built with-
out that element in their design.

Not only should the set of clinical findings (or “items” as I prefer to
call them) be determined by the issue, but the contents the user enters
as values into items should be determined by the item. The user should
almost always be presented with a default normal entry value, a series of
common alternate values, and the option to enter free text. This not only
speeds up entry of normal values, but also mildly suggests standard values
such that the record becomes more easily exported for reporting purposes,
automatic translation to other languages, and coding systems.
The user should never be limited to predetermined choices, only invited

to use them. Whenever he bypasses them and enters free text instead,
that effort will always be greater than choosing a preexisting alternative,
clearly signaling a defect in the list of available codes. Any such manual
workaround of the coding system must be caught and lead to updating of
the coding system to fill in the holes.
If the examination room is separate from the office, it has to be provided

with a desktop computer mirroring the one in the office. Only one of
the machines should be active at any point in time, and the ideal way of
achieving this would either be by smart card, which when removed just
freezes the screen and keyboard, not logs out the user. Alternately, a
proximity activated system using NFC cards or similar could work.
When designing this, keep in mind that the exam room may be shared

by several doctors, so when a doctor activates the desktop, it needs to show

94 CHAPTER 12. THE PHASES OF THE CLINICAL PROCESS

the same active session that particular doctor had available moments earlier
in his own office.
Another solution entirely could be a portable unit such as a tablet com-

puter, which the doctor can simply carry back and forth and do all of his
work on.

12.4 Creating referrals and orders

Referrals are created when the doctor wants to have another doctor examine
the patient or perform needed therapy. For instance, if we have a patient
with headaches, and we can’t say with certainty if they’re tension headaches
or something worse, we may want an X-ray or MRI of the brain, or maybe
we want a neurologist to take a look and give an opinion.
In these cases, we start with a problem we can’t solve. We have an idea

of the general problem area, like “headache” in this example, and what kind
of doctor is a specialist in that.
The next step is to find out where there is a neurologist in our geograph-

ical or administrative area we can send the patient to. If there are several,
we may want to select them according to the patient’s preferences or which
one has the shortest waiting times.
Once we decide on which neurologist to consult, we write up a referral

with the following elements:

• The actual question, such as “headaches of uncertain origin, please
advise”.

• A short history with major reasons why I can’t figure it out, which
examinations I’ve done, and including any results from MRI, lab, etc.

• Related documents in the form of earlier referrals with replies, and
documents included with those replies.

After that, we send off the referral using the communication means at
our disposal. Sooner or later, the patient will be seen by the neurologist
and we’ll get a reply back. (See section 12.8.)

How it is

In current systems, referrals, lab orders, X-ray orders, and creation of gen-
eral documents such as letters and attestations, are completely separate
from the notes and from each other. The creation of notes regarding a par-
ticular healthcare issue has no influence at all on the document or referral-
creating process. Even if I include the template keywords for diabetes,

12.4. CREATING REFERRALS AND ORDERS 95

nothing in referrals or prescriptions is tuned to diabetes care. Everything
is separate and starts from scratch at each use.

If I’m having an encounter with a patient for his yearly diabetes followup
and I open up the prescription module, I’m presented with the same choice
of thousands of products as always. There is no preselection of products
or product classes that are more relevant to my patient. The same thing
happens with referrals and orders. The range of presented choices is totally
independent of the actual problem the patient has, and is therefore always
excessive and confusing.

Each document or referral I need to produce starts out with a mandatory
decision on where to send it. There is no smart preselection of relevant ad-
dresses, just a full list of every address the system knows of. Also, there is
no indication of which addressees are interested or able to handle the prob-
lem I wish to present them with, except possibly as indicated by the name of
the department. For instance, the “cardiology” department is clearly doing
something related to the heart, but do they also take children with heart
problems, or do those go to pediatrics? Does the cardiology department do
ultrasounds of the heart, or is that the radiology department, or even the
clinical physiology department? As a user, I’m clearly supposed to know
all these rules and exceptions, but I don’t. This is something the system
should do for me.

Next, I need to fill in a question (in the case of referrals), and even though
I’ve probably already formulated that in the notes under “assessment” or
“planning”, there is nothing in the system that makes it easy to reuse that
information. Worse, in some systems there isn’t even a way of copying that
information via the clipboard, necessitating retyping it verbatim.

Finally, I need to rehash the main history of the patient, and the back-
ground information I may have. Again, the system won’t help me copy
over history or assessment notes, or even let me copy over other related
documents.

After I send it off, there’s a significant risk I’ll get the referral back, either
because it was sent to the wrong place, or it doesn’t carry with it all the
information elements the recipient requires. Since these referrals are based
on the paper model, the electronic referral now becomes useless, and has
to be written all over again6, even if the change is minimal or only the
destination address needs changing.

6Accompanied by piercing pig squeals from undersigned, who still can’t believe how
completely moronic these systems can be.

96 CHAPTER 12. THE PHASES OF THE CLINICAL PROCESS

How it should be

Since we’re working with an issue, the most probable scenarios for referrals
should be already provided in the system, with a brief synopsis of which
circumstances warrant referrals, and what elements should be included.
Since the issue template is aware of the reasons for referrals, it will also

know where to send them, and what should be put into the “cause” field
of the referral. It is also aware7 of the required extra information that the
recipient of the referral will need, so it includes that as well from the other
sources in the EHR. The only thing left for the user to do is to verify and
possibly add a personal touch to the different fields in the referral, then
send it off.
The chances of the referral being sent at the right time, to the right

place, for the right reason, and with the right information, will be hugely
increased.
If the recipient, against all odds, still sends the referral back due to

misaddressing or insufficient information, the user should be able to update
it and send it again, to the same or a different recipient, without starting
from scratch. We’ve had that functionality since forever in plain email, so
it’s clearly not rocket surgery.

12.5 Creating prescriptions

When we institute or extend treatments with medications, we need to create
prescriptions. When we start a new prescription, we do that with the
following considerations:

• The problem or disease we want to treat determines the therapeutic
class of products we want to use.8

• We check that there are no contra-indications for use of this thera-
peutic class for this patient. In other words, does the patient have
some other problem that precludes the use of this class of medication?

• We check that the patient isn’t already receiving any other medica-
tions that may interact with this medication. If so, either adjust
dosage of one or both medications, or avoid giving one of them.

7Can’t help anthropomorphizing the poor computer. I hope it forgives me.
8To see the whole list of therapeutic classes more formally, see the “Anatomi-

cal Therapeutic Chemical” (ATC) classification system: http://www.whocc.no/atc/
structure_and_principles/

12.5. CREATING PRESCRIPTIONS 97

• We determine the right dosage and duration of therapy, depending on
the patient’s weight, and kidney or liver function9, and which problem
or disease we’re treating.

• We locate the information on which commercial preparations of this
therapeutic class that this particular hospital or region supports or
recommends10.

• Finally, we get around to writing the prescription.

How it is

In current systems, the prescription module is independent of the rest of
the system. Yes, it is related to the patient and the prescribing doctor or
nurse, and department, but not to the current issue, referrals, results from
lab, or anything else that is a significant concept in healthcare.
This means that when I’m seeing a patient for a middle ear infection, and

I want to prescribe an antibiotic, the system presents me with all products
it is able to prescribe. It is as easy, or as difficult, to prescribe penicillin
as it is to prescribe an anti-psychotic medication at this stage. This also
means that if I’m not certain of the name of the product I want to prescribe,
I have the universe of all possible products to plow through, instead of the
relatively limited subset of products relevant to ear infections.
In many systems, you can select products according to ATC grouping,

limiting the searchable universe somewhat, but simply finding the right
ATC group is largely duplicated work. After all, we just told the system
what is ailing the patient, why do I have to keep telling it that in one
fashion after another?11

Once I’ve located the product, penicillin V in this case, I need to decide
on a dosage. Since the dosage differs according to indication, i.e. it’s not
the same if the penicillin V is prescribed for ear infections, as it is if it’s
used for pneumonia, and still different from the dose for sinusitis. Even
worse, none of these dosages are in the EHR system, anyway. So I have to
find the reference information on the product, usually through a web site.
Most EHR systems connect to a reference site and do look up the product

9Many pharmacological products are eliminated by the kidneys or broken down by
the liver, so if these have reduced function, the dosage may have to be adjusted accord-
ingly. In some cases, we must do lab tests to determine this, measuring either the liver
or kidney function, or the actual concentration of product in blood.

10Many healthcare organizations make deals with pharmacological companies to get
better pricing. These deals result in lists of “recommended products” that doctors are
asked (or required) to follow.

11Yeah, I know, it’s rhetorical. It’s because the system is idiotic and doesn’t have the
concept of “issue” or “disease”.

98 CHAPTER 12. THE PHASES OF THE CLINICAL PROCESS

for me at the click of a button, but I have to take it from there, scanning
the info, deciding on which table of dosages is applicable, switch back to
the EHR and enter the dosage in the form. Then switch back and forth a
couple of times to make sure I copied it over correctly.12

How it should be

If we have selected “middle ear infection” as the current issue while ex-
amining the patient, the issue template will already contain a list of rec-
ommended therapies, including a few different antibiotic classes, so I can
choose either the most likely to work, or the one the patient is known to
tolerate.
When I select one of the products in the issue template, it already comes

with a recommended dosage for “middle ear infection”, since it’s a part of
that issue template. It can easily calculate from there according to age and
weight, or ask for the weight if it is needed and not yet available to the
system. The duration of therapy is also dependent on the issue, and can
be automatically proposed to the user.
In some cases, including middle ear infections, the duration of the therapy

can be influenced by prior diseases. If the infection is a first occurrence, the
recommendation could be five days of antibiotics, while if it is a recurrence
within a few months of a previous middle ear infection, it is recommended
to take the antibiotic for 10 days. If the EHR is using “issues”, it can easily
detect that a similar issue was active less than, say, two months previously,
and then suggest a 10 day therapy to the doctor.
We can go even further. For the sake of argument, let’s assume the

doctor changes his mind about the diagnosis a couple of days later when
the therapy doesn’t seem to work. For whatever unlikely reason, he wants
to change his diagnosis from “middle ear infection” to “hairline fracture of
the skull”, after discovering that the patient fell down the stairs and having
done an X-ray study. He then deletes the issue “middle ear infection” and
replaces it with “skull fracture”. As he does that, the system can then ask
him if he wants to continue the antibiotics, since the system knows that
“middle ear infection” is the indication for the antibiotic. It’s aware of the
why of the prescription.

If the doctor removes the issue “middle ear infection”, all the data entered
into the corresponding template remains available in the EHR, it’s only the
“framework” of the issue template that is removed. Naturally, both the
addition and removal of the template for “middle ear infection” is kept in a

12And if my institution is stingy, as most large institutions practically always are,
I’m stuck with a far too small screen with a far too big EHR window, so I can only see
either the EHR or the penicillin V documentation, not both at the same time, hugely
increasing cognitive load and risk for errors.

12.6. CREATING THE NOTE RECORD 99

history log, but as the diagnosis changes, it doesn’t need to remain at the
front of the visible record.

12.6 Creating the note record

The note record mainly consists of free-form text. One can argue that this is
one of both the best and worst aspects of the medical record. It’s one of the
best aspects since it allows a fully unbounded and expressive description of
the patient’s condition, wishes, fears, and the doctor’s assumptions, vague
intuitions, and decisions. It’s also one of the worst aspects, since it won’t
allow the computer to anticipate actions, locate suitable support tools, and
warn for missing actions and errors.
The note record usually contains the patient history, the clinical ex-

amination, and the doctor’s conclusions, and open questions, but in this
discussion I’ll limit myself to the “subjective” part13, the “assessment” and
the “planning” parts of the note, since the remaining “objective” part is
discussed separately as “clinical examination” (section 12.3) and “results”
(section 12.7).

How it is

The “subjective” (“history”) and “assessment” parts of the note are currently
free text only, which is really all they should be. The problem is mainly
that they’re mixed in with the clinical examination, results, and planning
parts, which they shouldn’t be. Taken together, this creates a mixed bag
of free text, and text that really should be more structured.
In many cases, systems structure a few clinical examination fields with

drop-downs or numerical masks, but this doesn’t really make any significant
difference, while only being irritating in the cases we need to add something
that doesn’t fit the preconceived notions the developer had of valid values.

How it should be

We should preserve both the “subjective” and the “assessment” parts of the
record as unstructured text. Humans are unparalleled at describing ex-
actly what is perceived, including the degree of uncertainty and vagueness.
This description of impressions, state of well-being, and intuitions is very
valuable and should not be hindered by excessive structuring.
When attempts are made to force the user into using a stricter and more

well-defined language in these parts of the record, we force the human

13I’m using the SOAP terms here, but the same applies to non-SOAP structured
records.

100 CHAPTER 12. THE PHASES OF THE CLINICAL PROCESS

user to do the work machines are better at, namely syntactic and semantic
accuracy, in order to give the machine the task humans are much better at,
namely weighting facts and drawing conclusions. In other words, it places
both the machines and the humans at their maximum disadvantage.
The “subjective” and “assessment” parts of the record must therefore

largely remain textual and unstructured14. Since it is hard, or even im-
possible, to determine exactly which subjective complaints belong to each
“issue”—the patient’s well-being depends on all his problems to some degree—
this part should be common to all issues. In other words, whichever “issue”
I’m focusing on, I should always see the same “subjective” history in full,
for that encounter.
The “assessment” part should be shared the same way, since the assess-

ment must refer to all the issues the patient has, else it’s not a good assess-
ment.

Taken together, this implies that the complete data for an encounter
include one “subjective” field aka “history”, a set of one or more “issues”
which contain the clinical examinations, results, planning, etc, and one
“assessment” field.

12.7 Finding results

There are several situations where we need to find replies to referrals, X-
ray reports, lab reports, and so on. That could happen during a meeting
with the patient, when responding to queries from other doctors, or during
planning.
There are three main “angles of attack” when looking for documents, and

that is:

• By issue, i.e. everything related to headaches or diabetes. When we
try to form an overall picture of the particular issue we’re seeing the
patient for, this is the most important view. But also, when referring
a patient to a specialist for a particular issue, this is also the most
fruitful search method.

• By type of document, i.e. X-ray reports, lab reports, replies to refer-
rals, and so on. When considering ordering a test of some kind, it
becomes important to see if we have already done that test or exam-
ination, or something very similar to it.

• Chronological, that is everything that happened recently, or during a
certain time span. This method is more a way of figuring out exactly

14Colleague Johan M, and others, beg to differ, thinking that even the patient history
should be structured. Time will tell who is right.

12.8. RECEIVING RESULTS 101

what was done by us or someone else lately, to see where things are
leading. It is often the last choice in searches if the more directed
searches don’t work.

We refer to results during encounters, since our conclusions are based on
these results, among other things. Everything we base our conclusions on,
including these results, should be part of the record at that point.

How it is

During the encounter, with or without the patient present, we retrieve a
number of results, some of which will be significant for our conclusions
and actions. Since it’s important to include in the patient record not only
which conclusions we reach, but why we reach them, we have to refer to
results somehow. In current systems, there’s generally no other way to
refer to them except as a textual description. There is then no way for a
later reader of the record to with certainty determine what results we used,
except by painstakingly going through the list of results and matching them
up against our, possibly inexact, textual description. I haven’t seen any
system where the textual notes allowed a direct embedded link to another
document in the records, but if that could be done, it would certainly help
some.

How it should be

If we work in an environment with “issue” templates, the template itself
will have items where it refers to results. If the diagnosis of an infection
involves an estimate of CRP15, the template has the wherewithal to open
up the lab reports, then go look for the most recent few CRP values for
you. Similarly, if the template contained a possible referral in an earlier
encounter, it will now go look for a possible answer to that referral and
present it in the context of the same issue.
When the user then uses the issue template to look up a value and selects

the value he chooses to be most significant, that choice is preserved in the
issue, making it clear for later readers exactly what result the doctor did
use to base his conclusions on.

12.8 Receiving results

We also receive results outside the context of a patient encounter. Lab
reports and replies to referrals are brought to our attention when they

15C-Reactive Protein, a blood test that gives an indication of infection and
inflammation.

102 CHAPTER 12. THE PHASES OF THE CLINICAL PROCESS

arrive, regardless of what we’re really doing at that point in time. Most
doctors set aside some time during each day to go through these new results.
When I see a result from the lab, an X-ray report, or a reply to a referral,

the first thing I need to do, even before reading the result, is find out why
the tests were ordered, or why the referral was written. I need to locate
and assimilate the context in which this examination was required, else
I won’t be able to understand the implications of the results. Ideally, the
result should be presented in a reproduced context, with all the notes, other
results, and assessments, that were a part of the thinking when the order
was made, regardless of if it was ordered by me or another doctor.
If I don’t see that context, it becomes uncertain if I will fully appreciate

the meaning of the result and there’s a chance I will fail to react to it as
I would have reacted if I had gotten the result while being in the state of
mind I was when I ordered it. If I fail in that way, the result will not be
optimally useful, and the care of the patient will suffer.

How it is

Most systems present new results in a list of “new results” or “unsigned
results”, paralleling the old paper-based workflow. Back then, we usually
got a stack of results dumped on our desks by a secretary, each result
attached to the complete medical record of the patient. We were expected
to scan the result, do something, then sign off the result in the right lower
corner or some other predetermined place on the paper, showing that we
did pay attention and from now on, we take the blame if the appropriate
action isn’t taken.
So now we’re in the 21st century, and we still are expected to sign off

on the result in a very similar fashion. There’s no integrated idea of why
the test or referral was done, or what action we could or should take and
if that action did indeed result from it all. The system expects one thing,
and one thing only: my signing off on having seen it.
The act of signing off doesn’t really imply anything. I could act on the

result without signing off, or I can sign off without doing anything else
with the result. In some systems, simply viewing the result sets a flag, in
other systems, the user has to click a button or equivalent to “sign off”, but
there is no relationship between this act and a medically significant action
resulting from viewing the information.
Worse, the system presents new results in the context of new results,

not in the context I had when ordering the test or referral. This leaves
it up to me as a user to go back into the record and figure out why the
test was ordered and what to do with the result. Far too often, the test
or referral is done by someone else, under assumptions I don’t share, with
intended actions that were never written down, so I don’t know what to

12.8. RECEIVING RESULTS 103

do with the result. This is particularly a problem when I’m not private
to my predecessors plan of action, and when my plan of action wouldn’t
have included the ordered test or referral. Due to the lack of context and
reasoning, the test or referral result will turn out to not only waste my
time, but also not result in any useful new plan of action.

How it should be

If a referral or test is ordered from the context of an issue template, that
same issue template gets called up and presented together with the result.
In this context, the reasoning behind ordering the test is clear and explicit,
and the template also contains suggestions on what to do with the result.
What the template does is simply making the plan before, during, and after
the test, explicit and clear.
If I’m getting the results of a test ordered by a predecessor for reasons I

don’t agree with, this comes down to not agreeing with the issue template,
i.e. the guideline, my predecessor chose, and that is entirely possible and
fair. But then at least I know my predecessor followed a plan, which exact
plan that was and why, which gives me all the material I need to decide
on which plan to follow in the future in a fully informed and considered
fashion.
Having the originating issue template pop up when viewing a new result

also saves huge amounts of time, since all the tools for prescriptions, new
referrals, letters to the patient, etc, are right there, for that issue. It also
saves brain power, reducing cognitive load, and reducing the risk of missing
details and making mistakes.

The result should only be taken off the list of “new” results
when it has been used for other actions or documents. There is
no point in having a mechanism flag the result as “seen”, since
having been “seen” means nothing. The user isn’t guaranteed,
or even likely, to remember having “seen” anything, and even if
he did, being remembered isn’t something that in itself helps the
patient.

We should make a direct connection between removing the item from
the “new” list and the appearance of a new referral or action in the system.
These two events cannot be unlinked from each other.
The list should in fact not be called a list of “new results”. It’s more

usefully referred to as a list of things requiring some kind of action, a
“todo” list. Note well, that even “ignore” is an explicit action for which the
user needs to take responsibility. Doing absolutely nothing is not an action,
so in that case the item in the list remains in the list until some user takes
responsibility for assigning it to an action or an “ignore” category.

104 CHAPTER 12. THE PHASES OF THE CLINICAL PROCESS

If a result or report applies to several different specialities or users, then
assigning it to an action by one user, may leave it in the unassigned list
(the incoming “new” list, if you will) for any other users considered relevant
as receivers of the result or report. This avoids having the result disappear
from a user’s view even in the absence of action.

12.9 Reporting

Reporting encompasses mandatory reporting of communicable diseases, but
also statistical reporting, and case-load related reporting.
To do the reporting right, all the elements needed in the report must be

available. These elements often aren’t part of the clinical examination and
history taking of any particular encounter. To avoid poor reporting or extra
work, either all the data must be captured when it’s available and used for
later reporting, or the reporting should be done during the encounter with
the patient.16

How it is

Reports and attestations of all kinds are usually implemented in current
EHR systems as a collection of forms with pre-formatted fields. Some of
those fields are filled in automatically, such as patient demographic data,
current date and time, doctor’s name, and so on. Most other fields are left
empty, such as “history”, “clinical signs”, “conclusions”, “recommendations”,
etc. These fields are often of a character and intention that is dependent
on the use of the document.

The same problems referred to while discussing prescriptions (section 12.5)
appear when creating these documents as well. If the user is in the process
of handling a particular problem for a patient, only a very small subset
of documents is relevant. If the user is treating an infection, reports for
communicable diseases may be relevant, but a certificate for a driver’s li-
cense is likely not. In current EHR systems, the user will still be presented
with all relevant and irrelevant document forms to choose between, greatly
increasing the time and aggravation in finding the right one, while at the
same time increasing the risk that she’ll choose the wrong form. Which, of
course, will come back and bite her later.
Once we get past the onerous locating of the right form, we have to fill

it in. This usually consists of going back and forth a great number of times

16Sometimes the need to report only becomes obvious once results come in, and in
that case, it’s likely some elements needed for the reporting were not captured, and we
have to contact the patient again for that.

12.10. REPORTING TO NATIONAL REGISTRIES 105

to look up information in the records, then copying and pasting it into the
form, occasionally editing the text to look better, or to fit the form field.17

How it should be

Again, if the user is working in an “issue” template for the current problem
or disease, any document forms that can be relevant for this issue will be
listed there, and can be activated from there with a click. This limits the set
of possible forms to those that actually make sense for the issue. Nothing
hinders the user from going to the full library of forms if he needs something
exceptional, but that would rarely be needed.
Since the form is linked to the issue, it is easy to link the contents of most

form fields to existing items in the issue template, eliminating most of the
copy and paste work. Only very few fields will ever need to be entered
entirely by hand.
Having the form created from the issue also means that this relationship

is preserved. It will be trivial to see in the future that a certain document
or report has been created for this issue, and conversely, what issue was the
reason for the creation of a particular report.

12.10 Reporting to national registries

National registries are maintained for selected diseases, such as heart fail-
ure, diabetes, hip replacement surgery, and more. These registries can be
useful for a number of statistical purposes, and in selected cases may even
contribute to scientific knowledge.
Often reporting is done after the patient encounter by reading the medical

record and extracting the reportable data from it. The problem that often
occurs is that the right data was not collected during the patient encounter,
necessitating contacting the patient again, or submitting incomplete report
forms to the registry.
If the reporting can be done in the presence of the patient, or forms (paper

or electronic) are provided for the doctor to use during the encounter, the
frequency of missing data can be reduced to practically nil.

17As I’m writing this, I feel my rage boil up again at that one system that for years
didn’t allow switching back to the record, then didn’t allow copy and paste, and still
even with copy and paste can’t handle an excess of text for a form field, simply refusing
to paste in that case. Oh, and it won’t allow copying less than a full field from the notes
either. This is the way you turn plain bad software into an epic fail.

106 CHAPTER 12. THE PHASES OF THE CLINICAL PROCESS

How it is

In current systems, there is either no help in creating reports to national
registries, or forms are provided in the notes with all the data fields needed
for these reports.
Some systems have fields in the EHR that clearly makes it easier to create

complete records with all the required data during the encounter. Better
systems also eliminate duplication of entry between the normal clinical
examination and the reporting form.
These forms are then checked and completed by a nurse or doctor, then

sent to the national registry in binary form (hopefully), and anonymized
at arrival. In some systems, the patient identification is transformed using
some form of hashing function before being sent to the registry.

How it should be

If all required fields for the national registry are part of the clinical issue
template, the creation of a report is a simple question of extraction of those
data values, and subsequent packaging into a reporting data packet.
Before transmission, the data should be fully anonymized and provided

with a one-time-only patient identifier, that can only be resolved to the
right patient by a designated third party. The technology to achieve this is
fairly straightforward, but a precise description is outside the scope of this
book.

Chapter 13

The full medical process

From illness to cure, every step of the way.

In figure 13.1, we see the steps that together make up the care of a patient.
It’s very important to keep the full process in mind when discussing any
technology or method that has bearing on one of these components or steps.
Let’s work through the diagram now.
Presentation. This is the patient presenting his problem in the most

basic form. It could be after an accident, or it could be a patient complain-
ing of headaches, or fatigue, or loss of weight.
Initial inputs. The initial inputs consists of the set of questions and

clinical signs and symptoms that should be asked for all patients of a cer-
tain category. All patients presenting with a general medical problem such
as headaches or fatigue, should be asked the same basic set of questions,
and have the same basic set of clinical signs and symptoms checked. If a
patient presents with a stab wound from a knife, the set of questions will
be different, much smaller, and more to the point.
Database. The database is the set of answers to the initial questions,

signs and symptoms. (I’m using the term “database” in the sense used in
Weed et.al [6].)
Matching. The set of values in the database is now matched against

the set of “issues” in the system, to come up with a shortlist of probable
and possible explanations for the patient’s complaints.
Candidate issues. This is the shortlist of probable and possible issues

that could be relevant to the patient.

107

108 CHAPTER 13. THE FULL MEDICAL PROCESS

Figure 13.1: Steps in the complete care of a patient.

109

Additional inputs. The candidate issues are, as are all issues, each
linked to a set of patient history questions, clinical signs, and findings,
some of which are in the set of initial inputs, but some of which are not.
These latter, “new”, inputs are now added to the list of inputs, and can be
answered by the user and/or patient.
Actionable issue(s). The additional inputs can result in elimination,

or at least downgrading, of some candidate issues, and introduction of new
candidate issues. The process repeats until there is a stable set of issues
which we can act on, which we call “actionable issues”. More than one issue
can often be the explanation at any particular stage due to imperfections
in the methodology. Also, patients may have more than one issue at the
same time.
Template guided actions. Each issue template contains links to the

related issue items (complaints, clinical signs, and symptoms), but also
the actions that can be taken, such as referrals, orders for X-rays and lab,
prescriptions, and more. Each of these actions are tailored to the issue
itself, so that executing these actions will be much simpler and much less
error prone.
Treatment. Once the definite issue or issues have been determined to a

satisfactory degree, the actual treatment is chosen from the set of possible
treatments available in the issue template (or templates). The choice of
exactly which treatments to perform, and exactly how, is something the
patient and the doctor do together, where the patient is the primary deci-
sion maker. The issue template advice, however, presents a complete list
of options to enable an informed choice, while also allowing a more secure
and complete execution of the chosen alternatives.

To make this a living, evolving system, it must be possible to develop
each issue template in isolation, and still have the totality of issue templates
and input definitions behave as one unified system.

Chapter 14

The real requirements

After removing all the fluff, what’s left?

With the lessons of the previous chapters in mind, how do we formulate
the real requirements for an EHR system, that includes the features we
need, while not needlessly limiting the solution space? I’ll touch on the
areas I think are most important.
I’ll formulate these requirements as “awareness” key points, underlining

the importance of keeping the doctor or nurse informed of the right things,
not how that information is brought across. It does not matter in the least
if it is presented on paper, on a screen, by needle pricks on the back of the
hands, or by telepathy. Those are all possible (or impossible) implementa-
tions fulfilling these requirements, and it’s up to the fantasy and ability of
the architects and designers to choose the method.
In the same fashion, input to the EHR system can take any conceivable

form, such as typing, speech, gestures, telepathy1, interpretive dance, or
music, but the main point is that it is up to the architects and designers
to invent suitable methods. The key requirement is that there is an input,
not how it’s done.

14.1 Awareness of issues

When seeing the patient, the doctor or nurse must be made aware of all
issues the patient has or has had that can have any relevance to the current

1You wish.

111

112 CHAPTER 14. THE REAL REQUIREMENTS

encounter. The doctor or nurse must also be made aware of the issue that
is the subject of the current encounter.
An “issue” consists of a short description of a medical problem or fact that

forms the subject for diagnosis or treatment. It should be distinct enough
to allow identification in the literature, as indication or contra-indication
for medication, and as the basis for public health reporting or statistics.
It should be of a form that is, or could be2, available in standard coding
systems such as ICD–10 or SNOMED CT.
As the user is made aware of the issues, the user should, for each of those

issues, be made aware of all the diagnostic and therapeutic steps that have
been taken in relation to that issue and the reasoning behind it. That
“reasoning” includes at least the planning and what scientific basis that
planning has, including both diagnostic and therapeutic planning.
Any “summary of care” documents belonging to any issue should also

be clearly presented. There should be a way of finding more details than
the summary of care presents, but those details could be provided through
other means.
Any documents forming the basis for conclusions in summary of care

documents, or in responses to referrals, should be included directly or in-
directly in these summaries or responses. See appendix A where I discuss
referring to sources in the document-tree design, on page 167.

14.2 Awareness of patient history

The doctor should quickly and painlessly be made aware of the patient’s
history in general, i.e. those aspects not tied into a single healthcare issue,
but more related to the whole patient. Things like general well-being,
ability to lead a normal life, and the major obstacles to that, including social
and financial. This history should not be fragmented and contradictory, but
be presented as a consistent whole, where not only the different aspects,
but also the evolution over time is clearly shown.

14.3 Awareness of planning

The doctor needs to be made aware of the plans used in diagnosis and
treatments, what these plans consist of, the sources they are derived from,
and how far along in these plans the diagnosis and treatment have come.
These plans must be explicit and detailed enough so they can be com-

pared with other plans and “current best practice”, both by the doctor and
the patient. The sources must also be explicit enough so that it can be

2If it could be, but isn’t available in standard coding lists, one should take possible
mechanisms into account to add the issue to these coding systems.

14.4. AWARENESS OF OUTCOMES 113

verified that these plans are not invalidated by any sources having been
retracted or superseded by more recent science.
It should also be clear exactly why these particular plans were selected for

this patient, if it was due to the location, the patient’s own characteristics,
or a preference by patient or doctor.

14.4 Awareness of outcomes

It should be clear from the overview what the status of issues is. Are
they active, and if so, who is responsible for this issue (doctor, provider,
institution)? When was it last managed, and is there reason to think that it
needs more attention? Has it been forgotten about and left without action
for too long? Or is the issue resolved, and, if so, how (briefly)? Or are there
outstanding results or responses related to this issue that need handling?

14.5 Ensure action

When results or replies to referrals become available, the user should be
made aware of these. The system should keep showing these results or
replies as “open”, or “not yet attended to”, until effective action has been
taken, and these results have become an integrated part of further decision
making. The simple viewing of the result should not be regarded as effective
action.

14.6 Issue-based management

The patient management should be based on healthcare issues in such a
way that the system adapts to the actual problems being managed.
It should be easy to locate a healthcare issue and activate it. Once

activated, the system should present the user with the most frequently
used modules and actions that are applicable to that issue. The system
should also help the user navigate through the management in the most
optimal way, while also helping the user avoid forgetting steps and remind
the user of alternatives, possible other explanations for symptoms, and the
expected waiting times and resource costs.
The navigation through the management of a healthcare issue should

be defined primarily by the healthcare workers themselves, with the em-
phasis on correctness and completeness from a medical perspective. The
navigation structure and the recommendations are primarily a medical re-
sponsibility and form a set of guidelines, but non-medical management can
be consulted while setting up these guidelines such that unnecessary delays
and costs can be reduced.

114 CHAPTER 14. THE REAL REQUIREMENTS

The management of a healthcare issue is defined in what I call issue tem-
plates. Such a template contains guidelines for diagnosis and treatments in
a checklist form, referral addresses and criteria for referrals, recommended
diagnostic means, recommended therapies, and patient materials.

The system must be designed in such a way that these issue templates can
be used nationwide, or be customized for each region, institution, provider,
or even patient. There should be a provision for derivation of issue tem-
plates from other issue templates, such that the relationship is maintained
and it remains clear which templates are local variations of which other
templates.

When the management of a healthcare issue is modified due to new
knowledge or new resources becoming available, the corresponding issue
template should be easy to modify by healthcare workers themselves. At
the same time, users employing templates either identical to the changed
template, or derived from it, should automatically be given the opportu-
nity to update their own templates, and therefore management, of that
healthcare issue.

The issue template is designed to formalize the management of a particu-
lar healthcare issue, so it should be made available to the patient, allowing
him to judge for himself, or with the aid of another doctor or patient ad-
vocate, the contents of the plan, and therefore the quality, of the provided
and planned care.

14.7 Recording of history

The subjective “history” element is by its nature free text. There is no
useful way of structuring this according to some predetermined syntax.
Its main function is to relate what the patient experiences with as little
transformation or interpretation as possible. There’s good reason to even
let the patient largely write the history part himself.

Since this element relates the experience of the patient as a whole, it
cannot usefully be assigned to any particular subset of issues the patient
has, so it belongs to no single issue in the record. It can be a part of any or
all issue templates, but the content of the element will always be the same
across all issues for any particular encounter.

All this implies that the history part of the record cannot be made avail-
able in multiple language versions, unless there’s a translation tool provided
with the system.

14.8. RECORDING OF CLINICAL EXAMINATIONS 115

14.8 Recording of clinical examinations

Clinical examinations are not in essence different from other items in an
issue template. Each clinical item consists of a prompt and optionally a set
of preselected values.
When designing the template, one of the preselected values can be indi-

cated as a “default” value, and the system should have a convenient, easy
to remember, and fast shortcut or gesture that activates the default choice.
Going through a clinical examination, or any other kind of questionnaire,
that consists entirely of default entries, should be optimized for speed. (In
our iotaMed implementation of issues, the user double-taps an item to select
the default value.)
Keep in mind that the absolute majority of clinical examination items,

even in a very ill patient, will be normal, i.e. correspond to the default
value, so the system should optimize for this path.

14.9 Don’t lead me up the garden path

Some legacy EHR systems have warnings for potential errors. The most
commonly implemented is the pharmacological interaction warning, which
I’ll take as an example of everything that is wrong with how these systems
are built.
What happens is that you are first presented with a list of all medication

products you can prescribe, then you’re allowed to select one, and only
after that will the system come back and tell you it’s a bad choice3. Now,
this just serves to make us hate the system.
What the system should do, of course, is only present you with the prod-

ucts that are relevant to the issue you are in the midst of working through.
And even if it would present pharmacological products that have a contra-
indication or interaction warning attached to them for this particular case
and point in time, that warning should result in a flag that is visible at
the point in the issue where you would prescribe that product. In other
words, don’t waste my time selecting a product the system already knows
has a warning attached. That warning should be visible before selecting
the product.
Products that belong to the normal arsenal for the treatment of this

issue, but that should not be prescribed due to contra-indications or inter-
actions, should still be displayed, albeit with a flag of some kind. If you
hide these products, you’ll only confuse the user, since the disappearance of

3Adding insult to injury: many, if not most, of those warnings are so wrong they’re
just a waste of time.

116 CHAPTER 14. THE REAL REQUIREMENTS

a well-known therapeutic product from the issue template could be misin-
terpreted by the user to mean that the template is defective, or the product
withdrawn. Also, the interaction or contra-indication warning is just that,
a warning, and the user may need to prescribe that product anyway, after
considering the alternatives and the risks.
The user should always have the ability to choose any product from the

total list of existing products, but that choice may reside one or two levels
deeper in the interaction hierarchy, since it should rarely be needed if the
issue template is well designed.

14.10 Confidentiality

The system must allow setting access limits on issues. This confidentiality
flag should limit access in several levels to groups, or roles, of users. The
restrictions should not be too detailed, since that makes the system hard
to manage. A bare minimum should include the following levels:

• Accessible only to the creating organization (the department handling
the problem).

• Accessible to the above, plus designated individual doctors/nurses, or
designated other organizations (care centers, departments).

• Accessible to all authenticated staff.

Since the access restrictions are set on the issue, not the department,
some issues can be confidential, while other issues are not marked as such,
even though both kinds can originate in the same department.
The confidentiality setting also includes all medication, all referrals and

lab reports that are originated from the issue in question.
Since the presence of an issue, or any result covered by the confiden-

tiality setting of the issue, can form a warning or contra-indication when
another doctor or nurse prescribes medication or orders diagnostic tests or
treatments, the system must still be able to warn for that. If the initiating
doctor or nurse are excluded from viewing the issue, one of the following
actions can be prescribed by policy to occur:

• The originator will be warned about the contra-indication, and told
what it consists of.

• The originator will be warned, but not told what it consists of.

• The originating organization for the hidden issue will be told there is
an attempt to prescribe an action that could be dangerous, and this
organization will have to resolve the issue somehow.

14.10. CONFIDENTIALITY 117

Other combinations could be possible, such as involving the patient, or
involving only the actor that created the confidentiality flag in the first
place.

Chapter 15

How active should the software be?

Who should run the show? We or the machines?

When the software contains information about diagnostic criteria and at
the same time has the clinical data pertaining to the patient, it is tempting
to assume that we should let the software draw conclusions from the clinical
data and establish diagnoses. Making decisions is what computers are for,
after all. But designing for that would be a mistake.

15.1 The keyhole effect

If we let the software make diagnostic decisions and pose questions ac-
cording to past answers, it will lead us through a series of questions and
answers that appear to the user in a sequence according to its programming.
It proceeds along a path through a flowchart. This hides the overview of
the process from the user, giving the user just a “keyhole view” into the
exact questions and parameters that the software deems interesting at any
particular point of the decision process.
As a user, I’m inclined to game a system like this, simply to be allowed

to view the different branches of the decisions tree that are hidden depend-
ing on particular data input. The whole thing quickly degenerates into a
charade of false inputs just to make the desired information come up on
the screen. Putting in false information into the record for this reason, or
for any reason, is a really bad idea that is bound to come back and bite
you later.

119

120 CHAPTER 15. HOW ACTIVE SHOULD THE SOFTWARE BE?

15.2 The indiscriminate criteria effect

When the software chooses clinical data to match to criteria, this is often
done quite mindlessly, leading to wrong conclusions. For instance, the
criteria for the diagnosis of diabetes is, among other things, “two consecutive
capillary glycemia values of 7.1 mmol/L or higher”. If we let the software
make that diagnosis based on the series of glycemia values in the records, it
will make that diagnosis in many cases where a doctor would not, and vice
versa. Many of these values may be non-representative, the result of other
influences that the doctor knows about, but which the software doesn’t.
Also, if the software does not make the diagnosis, but the doctor does, it
will probably force the doctor to falsify clinical data to make the software
behave as he wishes it to behave.
If the doctor is made to fiddle with data to make the software draw the

right conclusions, the set of clinical data becomes suspect. The right role
of the software is to present clinical data and criteria together in an easily
digestible format, aiding the doctor as he draws conclusions and makes
decisions.

15.3 The disempowerment effect

If the EHR system is enabled to make decisions that used to be taken
by doctors, healthcare providers may see this as a way to reduce the de-
pendence on doctors, thereby increasing the capacity for healthcare, or
reducing the costs for doctors, or both. There is nothing wrong with these
goals, but there is a significant probability that doctors will see this as
disempowerment and refuse to delegate that power to the IT system.
Since getting the cooperation of doctors is crucial to any successful au-

tomation project, you should carefully consider if it is worth it to pursue a
transition plan that involves taking power away from doctors by force. It is
probably more prudent to have that transition occur further in the future,
as it will undoubtedly sooner or later be the case, and have that transition
be initiated by the doctors themselves.

15.4 Nurse vs doctor domain expert

The leading user influence in EHR development is usually either a nurse or
a doctor, and it seems that the difference between the outlook of these two
professional groups is severely underestimated.
Nurses usually work in a process oriented workflow: start from the top

and work your way to the bottom of the list. Typical examples is prepara-
tion for operations, postoperative care, post anesthesia checks, etc.

15.4. NURSE VS DOCTOR DOMAIN EXPERT 121

Doctors seldom work in a directed workflow, but tend to work with a list
of things that should be considered or done, and where the order, or even
completeness, is of secondary importance.
A software system designed by nurses will have a fundamentally different

workflow from a system designed by doctors. There is nothing wrong with
this, unless you let nurses design systems for doctors or vice versa.

Chapter 16

The issue oriented record

It’s not all doom and gloom. Issue orientation to the rescue!

In an earlier chapter (see chapter 7) I described an example of a current
EHR system. You won’t find any description of knowledge support there,
because there is none. Nil, nada, zip. I also described in chapter 8 how much
we actually need knowledge support in our daily work as doctors. What
we don’t need is another tool to use along the medical record, doubling our
interactions with the computer, but a tool that replaces the medical record
as we have it now.
The solution is to take guidelines and other knowledge based support

tools and adapt them so they become both interactive, and a mechanism
for recording both history and actions. I’ll describe one way of doing just
this.

16.1 Diabetes, old style

As an example, I’ll use the yearly followup of a diabetes patient. There are
a number of things the doctor should check, and a number of decisions to
take. None of these things are very difficult or far fetched, but you have to
think of them, and you have to do them.
For instance, you should check the heart and lungs, and take a blood

pressure. You should check the weight, the glycemia values, creatinine,
lipids, and the albumin/creatinine index in urine. You should also ask the
patient how many hypoglycemia episodes he’s had the last year. Every three
years, you should have an ophthalmologist check the eyes for complications.

123

124 CHAPTER 16. THE ISSUE ORIENTED RECORD

The treatment of diabetes type 2 is primarily tablets, and the first choice
is currently metformin. If that isn’t enough, we can add glimepiride or
glipizide.
There’s a lot more things like that you have to think about, but the above

considerations are enough for my purposes here, so I’ll stop now.
Using a classic EHR system, the doctor has to remember the above items,

or look them up in a guideline or book as the patient waits. If the doctor
relies on her memory alone, she won’t know if the recommendation for, say,
metformin as a first choice has changed due to new discoveries. She’ll just
plow on prescribing it as a first choice forever.
In the classic EHR, the doctor may have a template for diabetes yearly

followup, with the keywords “Heart”, “Lung”, “Hypoglycemias per year”,
“Medications”, “Conclusion”, which may remind her of what general areas
she should spend some thought on. But that is all. If she wants to make
sure the eyes have been checked on time, that’s something she’ll have to
remember to do. And to do that, she’ll have to switch over to the referrals
module and then wade through it to find any ophthalmology reports about
diabetes followup1.
When the doctor orders the lab examinations through the classic EHR,

she has to switch over to the lab module, then remember to order the right
lab tests for a diabetes followup. If she’s lucky, there’s a preselected group
of lab tests for that purpose, but she has to remember to look for that.
Back in the notes part of the EHR, there is no automatic indication in the
notes that she did in fact order the lab tests at all.
Towards the end of the consultation, the doctor needs to consider any

needed therapy changes. Once having thought of that for a while, she ought
to write down a note in the record about this, mentioning if the therapy can
remain unchanged, or if it needs updating, and if so, how. If the therapy
needs additions or changes, the doctor switches to the prescription module,
then edits the prescriptions accordingly. There’s no guidance whatsoever
from this module in what is first choice, or second choice medications for
diabetes. Or for anything else, either2.

1The eagle eyed reader would maybe notice a dubious assumption here, namely that
any examination for eye complications must have been done by an ophthalmologist, and
it must have been done due to a referral, so that’s where we have to look. What we should
have been able to do is find the actual examination results we’re looking for, regardless
of if it was done through referral, or which speciality performed the examination. The
problem is the misguided conflation of what was done with who did it, that is so pervasive
in current systems. The same bad assumption causes confidentiality in current systems
to be based on medical departments instead of on the actual health care issue.

2Some EHR systems indicate “preferred” choices graphically, but these “preferred”
choices are determined on price, availability, and deals with suppliers, and have nothing
to do with preference from a medical perspective. As always, the only preferences that
seem to matter enough to make it into features, are administrative preferences.

16.2. DIABETES, NEW STYLE 125

I’ll stop here, but the rest of the consultation goes on the same way.
Everything medically significant, any real decisions and conclusions, only
happen in the head of the doctor. The EHR system just sits there and
allows recording of anything the doctor decides. It assists in sending off
prescriptions and finding documents, but it basically has no idea what is
going on and why. It has as much to contribute to the consultation process,
as a word processor contributes to the jokes in a Terry Pratchett novel.

16.2 Diabetes, new style

The new style EHR tool adapts to the healthcare issue and the point in
time. For each healthcare issue, such as diabetes, it has several variations
of templates, each of which I call a “block”.
For diabetes, there’s a block for the diagnosis and workup, used when the

patient initially presents with the problem. There’s a block for the yearly
followups, which is used over and over again, and there may be a block for
the diabetes nurse, and for the foot care specialist, and so on.
The block for diagnosis and workup is intended to be used once only,

and that is when you decide if the patient does indeed have diabetes or
not. It also contains the initial examinations and treatments for diabetes.
It can be used again if the full workup couldn’t be done in one consultation,
though.
Items you’ll look at during the workup are possible infections, dietary

habits, weight and weight loss, vascular status, and more. The actual
criteria for making the diagnosis are also evaluated in this phase.
The next type of block is the yearly followup block, where we need to go

through parameters that indicate how well managed the diabetes is, and if
changes of therapeutic regimens are needed.
After a few years, the patient record will contain several diabetes related

blocks, typically one for the workup, and one for each year of followup (see
figure 16.1).

The workup block

The workup block, as all other blocks, contains a number of prompts, or
questions, that can be answered with plain text, number, or one of a series
of predefined choices.
We should ask the patient about abnormal thirst, excessive urination,

sugar urge, infections, and more. We should also check on the patient’s
general condition, skin turgor (an indication of hydration), sores, candida
infections, or other complications. We need to review lab values for elec-
trolytes, glucose, ketones, and more. If lab results aren’t available, we need
to order a standard set of lab tests.

126 CHAPTER 16. THE ISSUE ORIENTED RECORD

Figure 16.1: The series of issue template blocks in a typical diabetes patient.

Figure 16.2 shows part of the workup block for diabetes, where you can
see the relevant input fields for weight loss, thirst, polyuria, blood pressure,
and more, already provided. All these are gentle reminders of what to ask
and examine with a diabetes patient at presentation. But you also see the
lab tests that should be ordered, and right next to the list there’s a button
to tap which automatically orders just those tests, and then helpfully adds
a marker showing they have been ordered. There’s no switching back and
forth between the EHR system and a guideline system, or between the notes
and the lab module in the EHR system.
In figure 16.3 we see another part of the same workup block for diabetes.

In this part, we’re reminded that the diabetes diagnosis depends on two
consecutive values of blood glucose, and by tapping those fields, we get a
popup allowing us to select the most significant value from the available lab
reports. Again, no hunting around different parts of the EHR system to
collect the relevant information. Instead, we get it presented exactly at the
point we need it. By selecting one of the values as most significant, we’ve
also inherently documented that choice, eliminating a bit of note taking at
the same time.
If we need a reminder on how high the glycemia value should be for a

diagnosis, and if we run the system on a tablet, we can tap the info button
on the left, and get a brief description of the criteria. Having “information
at your fingertips” doesn’t get more real than that.
In the lower half of figure 16.3, you also see a set of useful referrals.

Since these are part of the template for diabetes, the referrals are already
largely filled in with the right destination, the right questions, and the right

16.2. DIABETES, NEW STYLE 127

Figure 16.2: Part of the workup block of the diabetes issue template.

included information, as shown in figure 16.4. By touching the ⊕-button
to the right in figure 16.3, the referral form is shown, and once sent, it’s
also marked as completed in the main workup block as in figure 16.5.

Therapy

When we get to the part where we prescribe medication, we use the same
principles. Right there in the issue template block we are informed of the
first choice medication, with a brief mention of recommended dosages for
this disease (see figure 16.6). A number of medications are used in different
diseases, and for each of those applications, different dosage tables are often
used. If the medication recommendation is made part of the guideline in
the form of an issue template, that recommendation will be accurate for

128 CHAPTER 16. THE ISSUE ORIENTED RECORD

Figure 16.3: Another part of the workup block for diabetes.

the issue at hand, without having to look up the same disease yet again in
another system managing prescriptions.
After clicking the ⊕-button in figure 16.6, the system now presents the

user with a set of alternate recommended doses for this medication, making
the selection very simple. See figure 16.7.
Back in the block, we clearly see the flag to the right of the medication,

indicating that a prescription was made (figure 16.8). The square button
to the far right is now enabled. Touching that button brings up a history
of prescriptions and dosages for that one medication.

With this system, the EHR is “aware” of what disease you are
managing, so it can present the relevant medications, and assist
in making the right choices. In other words, the most common
and recommended courses of action require the least amount of

16.2. DIABETES, NEW STYLE 129

Figure 16.4: Filling in a referral and sending it.

Figure 16.5: After sending a referral, it is flagged in the block.

130 CHAPTER 16. THE ISSUE ORIENTED RECORD

Figure 16.6: The therapy block of the diabetes issue template.

switching around and mental work. The risk for oversight and
errors is greatly reduced, as well.

16.3 The template structure

With any guideline-based system like iotaMed3, we have to structure the
templates such that they can easily evolve in time as knowledge about
the managed diseases improves. We also have to provide for variations in
guidelines depending on country, locality, provider, and even at the level
of the individual patient. Since an issue template is a digitized form of a
plan, it must allow adaptation of that plan for a whole series of reasons.

3I’m being disingenuous here; there are no other systems like iotaMed.

16.3. THE TEMPLATE STRUCTURE 131

Figure 16.7: Selecting a dose from the recommended set.

Derivation

The way to allow evolution and local specialization of templates is by classic
inheritance and derivation. Any new template is explicitly based on a pre-
ceding, similar template, or on the root “nil” template. The new template
contains the identifier of the template4 it derives from, so that it becomes
possible to check for changes higher up the inheritance tree.
To illustrate why this is a good thing, let’s assume we have a parent

template block that defines the diagnostics and therapeutics of diabetes. It
contains the defined glycemia limits for making the diagnosis, and the rec-
ommended oral medications, among a lot of other things. Let’s also assume

4Only single inheritance is provided. I really see no need for multiple inheritance in
this design.

132 CHAPTER 16. THE ISSUE ORIENTED RECORD

Figure 16.8: Prescription is flagged in the block.

that a new block is derived for a particular clinic, and that the diagnostic
limits are different in this new block, but the therapeutic recommendations
remain unchanged. The new diagnostic limits were the reason a derivation
was done, instead of using the original template block as is.

At some point in time after this happened, the parent template is de-
rived to a new version with a change in the medication recommendations.
Whenever the earlier child template block is used, the system can now warn
the user that there has been a change in medication recommendations in
a parent template, and offer to merge in those changes and create a new
child template with both modifications together.
I realize that this was quite a murky explanation, but the elevator pitch

for inheritance is as follows:

By updating issue template blocks using the inheritance mech-
anism, any changes to medical practice recommendations will au-
tomatically spread to all users of the system, allowing for efficient
and correct knowledge distribution that simply does not exist in
legacy EHR systems.

To make this work, all template blocks must be globally indexed, includ-
ing back pointers to parents and proper security, but the detailed explana-
tion of how this works is outside the scope of this book5.

5If you want to know how, hire me.

16.3. THE TEMPLATE STRUCTURE 133

Blocks

When we take a regular guideline, such as the one described in section
8.4, and convert it to a template that can be used in an issue-template
based EHR system, we quickly notice that the textual information must
be subdivided in a particular way to allow it to be useful for a number of
patient encounters over time.

Figure 16.9: The blocks available in the diabetes issue template.

For instance, the items in the guideline that concerns making the actual
diagnosis are only used and relevant once, at initial presentation. The items
that have to do with yearly followups, however, are revisited at every yearly
encounter. When the guideline is used as an issue template, the actual data
entered into the template will be different for each encounter. This leads us
to divide the issue template into “blocks”, where each block is applicable to
a different type of encounter. In this example, we’d create two blocks, one

134 CHAPTER 16. THE ISSUE ORIENTED RECORD

is the “diagnosis and workup” block, while the other is the “yearly followup”
block.
Some issue templates will need blocks for “operation” as in orthopedics,

“treatments” as in radiotherapy, “hourly stats” as in intensive care units,
and even “patient instruction sheets” for helping the patient in his own
home care. As an example of available blocks, see figure 16.9.

Items

Figure 16.10: Part of a block showing six items.

Each block consists of a number of elements that I choose to call “is-
sue items”, or “items” for short. In figure 16.10 we see part of the block
“diabetes, yearly followup”. Within the image, there are six “items”, each
consisting of a “prompt”, such as “foot status”, “peripheral pulses feet”, and
so on. Next to the prompt is a field for the entry of the value. Some of
these fields allow for a popup of predefined values, too.
In the figure, we see that the item with the prompt “peripheral pulses

feet” has it’s value popup open with four predefined values: “bilaterally
present”, “weak left side”, “weak right side”, and “weak bilaterally”.
The prompt, the field, and the predefined popup values (if present), to-

gether form an “item”. The item as a whole is defined in a “data dictionary”
and can be reused in any number of different blocks, even across issues. This
means that if you need to ask the same question about peripheral pulsations
in another template block, you don’t need to redefine the question and the
possible answers, you can simply refer to it from two or more places at the

16.3. THE TEMPLATE STRUCTURE 135

same time. The only thing needed in the block proper is that reference,
nothing more.
The actual code that defines the shown part of the yearly followup block

looks like this:

<item name=’dd:Hypos’/>
<item name=’dd:Status’/>
<item name=’dd:FootStatus’/>
<item name=’dd:PeripheralPulses’/>
<item name=’dd:FootNeurology’/>
<item name=’dd:PulmSounds’/>

Data definitions

As already described, the items in a template block refer to data definitions
that are separately defined. This allows us to reuse data types in multiple
item definitions. So, not only can one item definition be used in several
templates, but data definitions can also be used in several item definitions.
The data definition for “peripheral pulses” in the above example looks

like this in the data dictionary:

<obsdef name=’PeripheralPulses’ type=’select’ default=’bilok’>
<prompt lang=’en’>Peripheral pulses feet</prompt>
<prompt lang=’sv’>Perifera pulsar</prompt>
<select value=’bilok’>

<prompt lang=’en’>Bilaterally present</prompt>
<prompt lang=’sv’>Bilat närvarande</prompt>

</select>
<select value=’weakleft’>

<prompt lang=’en’>Weak left side</prompt>
<prompt lang=’sv’>Försvagad vänster</prompt>

</select>
<select value=’weakright’>

<prompt lang=’en’>Weak right side</prompt>
<prompt lang=’sv’>Försvagad höger</prompt>

</select>
<select value=’bilatweak’>

<prompt lang=’en’>Weak bilaterally</prompt>
<prompt lang=’sv’>Bilat svag</prompt>

</select>
</obsdef>

As you can see, all the textual information that can be shown to the user,
either as a prompt string in the left part of figure 16.10, or as one of the

136 CHAPTER 16. THE ISSUE ORIENTED RECORD

predefined choices in the popup to the right in the same figure, can be de-
fined in different languages. The actual string displayed to the user is taken
from the language that closest matches the language of the logged in user.
As you can also see in the code snippet, the data definition as such, and
each predefined value, also has a “name” or “value” attribute that uniquely
identifies it in a user language neutral fashion, allowing automatic transla-
tions of at least the predefined values, since what is saved in a database is
the language-neutral value or name only.
If the user enters free form text, however, that will be saved as is in the

database, and can only be translated automatically if some other mecha-
nism is used to achieve that.
Both the code for the data definition (the “name” attribute) and the

“value” attribute for the predefined values can be replaced or coupled with
standard terminology references, such as for example SNOMED CT. This
is, as far as I’m aware, the first actually useful application of this term
system in medicine6. It’s unfortunate that the SNOMED CT set of terms
appears too incomplete to be reliably implemented in iotaMed, though7,
which explains why my examples don’t show it.

16.4 The data pool

The data pool is the collection of all item data that is entered into all
the used issue template blocks for one patient. Each value in the data
pool is indexed on a combination of “encounter” and “data definition”. The
“encounter” is a certain point in time and provider, for instance “Dr Sistron-
berg” at “Jan 14th, 2014, 15:30”.
Since the data value has no relationship to any particular item or tem-

plate block, any reference to one and the same data definition will show the
same value for the same encounter. In other words, if you have a patient
with a template for diabetes and a template for hypertension open at the
same time, you only need to enter a blood pressure value into one of them
to see it in both. This neatly eliminates duplicate work for patients with
multiple pathologies.
This separation of data values in the pool from the presentation in a

context, as in template blocks, also exactly matches what we in software
design describe as the “model” on one hand, and “view” on the other. To
put it another way: it doesn’t matter if you measure the blood pressure in
the context of managing diabetes, or if you measure the blood pressure in

6Hehe. . .
7The catalogue contains around 400,000 terms, and I still can find only about half

of what I need for an everyday trivial clinical exam. Amazing, but not in a good way.

16.4. THE DATA POOL 137

the context of managing hypertension, the blood pressure still is one and
the same value.
If you have entered the blood pressure into a template block for diabetes,

and you then add in another template such as for instance for the issue
“cardiac failure”, then the blood pressure will automatically be pre-filled
into the new template.
When you delete a template block, that is a “view”, this does not erase

any data values that were already entered, so replacing a template block
with another does not mean you have to re-enter any values. This allows
us to change our mind about diagnoses, deleting and replacing templates,
and not have to repeat already performed clinical examinations.

Chapter 17

Matching findings to templates

Getting from headache to migraine.

How do we arrange to have the system help us find the right set of tem-
plates from a few symptoms? For instance, if the patient has a headache,
can’t we already present the user with the options “migraine”, “hyperten-
sion”, and “meningitis”, just to pick a few?
In previous chapter, I described issue templates containing a series of

clinical findings, each with a set of alternative values. The template as
such works as a check list, ensuring that the most important aspects of a
particular issue are examined and considered by the physician. But these
clinical findings have another important function, namely to indicate which
other issues need considering, leading to a mutual dependency between item
values and templates.
For example, if the physician (or the patient) starts out filling in a very

general template, such as one for “fatigue”, the values entered should be used
to propose other, more specific, templates, such as those for depression,
Addison’s disease, hypothyroidism, diabetes, etc. Each of those templates
should be already filled in with the values entered in preceding templates,
and further entry into these more specific templates should lead to further
refinement and suggestions for other templates.
The following discussion is heavily influenced by the writings of Lawrence

L. Weed in the book “Medicine in Denial” [6]. Weed et.al describes this
matching of clinical findings to issues (or as he calls them, “problems”) as
the most important advance in medical management we can achieve with
computers. It would eliminate the almost random way physicians currently

139

140 CHAPTER 17. MATCHING FINDINGS TO TEMPLATES

make diagnostic hypotheses and perform clinical examinations and diag-
nostic tests. Far too many diagnoses are missed because the physician is
incapable of considering the entire gamut of possible routes to a diagnosis,
something a computer would have no problem with at all.

17.1 The initial findings

The very first issue template should be fairly simple and serves to select
the major area the problem concerns. This template could consist of a
single item with the values “fever”, “fatigue”, “abdominal pain”, “thoracic
pain”, “headache”, “throat ache”, “skin problems”, “muscle and joint prob-
lems”, “trauma”, “weight problems”, and maybe a few more. Depending on
the answer to this first question, more specific issue templates would be
activated for further work.

As soon as a clinical finding is entered, the system can present a number
of candidate issue templates. For instance, if “fatigue” is selected in the first
issue template, the system should already list a large number of possible
other issues that involve fatigue, such as hypothyroid disease, diabetes,
rheumatic fever, cancer, Addison’s disease, and many, many more. Each
of these issues have their own set of relevant clinical findings, and a set of
these would automatically be added to the active template as the user fills
in values.
We shouldn’t pick every possible clinical finding from all candidate issues

to add to the current template, since that would quickly overwhelm the
user. Instead, the most discerning clinical findings should be selected. The
selected clinical findings are those that have the highest potential to reduce
the number of candidate issues1.
But that is not enough. We have to have a feedback mechanism such that

the system can improve its accuracy as it learns. We also need a mechanism
so that “standard problem cases” can be run against the system to verify
that the system does not miss these diagnoses.

17.2 Combinatorial matching

The term “combinatorial matching” is used extensively in [6] to mean the
process of finding diagnoses or treatment from the answers to a large set
of questions about symptoms, clinical tests, laboratory tests, and so on.

1The mechanism used is akin to how an SQL query optimizer selects which index to
process first, but instead of having the goal of preserving computing resources, our goal
with issue oriented systems is to as quickly and efficiently as possible reduce the number
of candidate diagnoses down to just one or a few.

17.2. COMBINATORIAL MATCHING 141

Each combination of signs and symptoms results in a small set of possible
diagnoses to work with.
Weed describes the gathering of signs and symptoms by the physician,

or by the patient, with the aid of a computer, as a separate step before the
actual combinatorial matching step, but it could be made more interactive
and more effective, if the two steps are merged into one.
We need to define some terms before we proceed. These definitions serve

the purpose for this discussion, without any claim that these terms are
widely accepted. That in itself is not important, but it is important that
we agree on the meaning in this context.
Issue items are defined separately and can be used in any number of issue

templates. Medically speaking, each issue template contains issue items
that either confirm or exclude the diagnosis the issue template defines. If
the same item, say “blood pressure”, is used in two different issue templates,
both templates refer to the exact same issue item, and to the same value.
This eliminates multiple entry if two or more issue templates make use of
the same clinical finding.

Figure 17.1: The three groups of coefficients relating to clinical findings
and issue blocks.

There are three groups of coefficients determining the selection and impli-
cations of clinical findings. See figure 17.1 and table 17.2. These coefficients
together determine which issue templates to consider given how the user
has entered clinical findings into items, and simultaneously determine which
new items to add to a list of items for consideration by the user. These
added items are presented as items in the current issue template view the
user is working with.

All these coefficients are determined as part of the process of
building the issue template, so they are all under control of the

142 CHAPTER 17. MATCHING FINDINGS TO TEMPLATES

Table 17.1: Meaning of terms in this discussion

Term Meaning

Healthcare issue A disease, or a major symptom such
as “fatigue” or “headache”, which can
have its own clinical findings, and
recommendations.

Issue Short for healthcare issue.
Finding Short for clinical finding.
Lab finding The result of a lab test or group of lab

tests.
X-ray finding One or more results from a defined

suite of X-ray studies.
Referral finding One or more results from a referral.
Sign One or more results from the clinical

examination of the patient.
Symptom Something the patient reports during

history taking.
Clinical finding Any of the above findings or

symptoms.
Issue item The technical implementation allowing

the user to enter a clinical finding into
an issue block.

Item action The implementation of the mechanism
to create prescriptions, referrals, lab
orders, X-ray orders, letters, forms,
other forms of documentation.

Issue block The collection of entry fields, widgets
allowing creation of item actions, and
links to background information,
related to a particular part or phase in
a healthcare issue.

Issue template The collection of issue blocks for a
particular healthcare issue.

17.2. COMBINATORIAL MATCHING 143

Table 17.2: Groups of coefficients

Group Function of the group

Finding-issue coefficients This group determines the degree of
inclusion or exclusion of a particular
healthcare issue in the list of likely
issues.

Finding coefficients This group determines how far up the
list of questions this particular item
should be placed, other factors being
equal.

Issue coefficients This group determines the sorting of
issues that are similarly ranked by
other calculations.

one mind with the most expertise on the subject, with the best
shot at achieving “conceptual integrity” [2, p. 42].

Finding-issue coefficients

When a clinical finding is positive, it will imply that some diagnoses, i.e.
issues, are more likely, and some diagnoses are less likely. For instance,
an increase in body weight makes the issue “congestive heart failure”2 more
likely, while at the same time making the issue “hyperthyroidism” less likely.
When the finding is negative, it will also imply that some diagnoses are

less likely. For instance, a normal hemoglobin will make both polycythemia
vera and iron deficiency less likely. A negative finding may, in combina-
tion with other findings, increase the likelihood of issues. For instance, if
hemoglobin is low (a positive finding), but the average volume of red blood
cells is normal, it elevates the likelihood of bone marrow problems3.
Even though clinical findings interact this way, we don’t need to invent

some complicated algorithm to calculate these effects. Instead, we’ll rely
on pattern matching the way Weed et.al describes [6]. It turns out that
the issue “bone marrow problems” has a pattern of “normal cell volume”
combined with “low hemoglobin”, and therefore is the best match for this
combination of clinical findings.
We can construct a set of coefficients reflecting this relationship between

the two clinical findings and the three issues as in the tables 17.3 and 17.4.

2This is just one of many diagnoses made more likely by increased body weight, of
course.

3Don’t take this text too literally. I’m oversimplifying for the sake of argument, and
I really haven’t taken all the factors into consideration.

144 CHAPTER 17. MATCHING FINDINGS TO TEMPLATES

In the example, I’m using the issues “congestive heart failure” (CHF) and
an overactive thyroid gland (hyperthyroidism).

Table 17.3: Positive finding-to-issue example

CHF Hyperthyroidism

Weight gain +0.5 –0.9
Fatigue +0.7 +0.7
Tremors 0 +0.7

Table 17.4: Negative finding-to-issue example

CHF Hyperthyroidism

Weight gain –0.1 0
Fatigue –0.3 –0.3
Tremors 0 –0.7

As you can see in the table, values go from −1 through 0, and up to +1.
−1 indicates that the diagnosis is excluded, and other, smaller, negative
values indicate varying degrees of the clinical finding being an argument
against the diagnosis. Positive values indicate arguments for the diagnosis
in the same way, where +1 would indicate that the diagnosis is a certainty
with this positive clinical finding. A value of 0 indicates that the clinical
finding gives no indication whatsoever about the diagnosis, either confir-
matory or exclusionary.
For instance, from the first table (17.3), we can see that weight gain is

an argument for CHF to a medium degree (+0.5), but strongly against
hyperthyroidism (−0.9). Fatigue is a good argument for both diagnoses
(+0.7 in both cases).
From the second table (17.4), we see that the absence of weight gain

says nothing about there being hyperthyroidism or not (0), but is a weak
argument against CHF (−0.1). Clearly, even if the presence of a finding
can be an argument for a diagnosis, its absence does not always form an
argument against it. It may, but this varies from finding to finding, and
from diagnosis to diagnosis.
One can argue that a clinical finding with the value 0 shouldn’t even be

in the issue template, since it has no relevance to the issue. However, it
may be important for pointing to other possible issues, that is, as part of
a differential diagnosis4. If the user is working through a “congestive heart

4A “differential diagnosis” is the process whereby we look for alternative diagnosis,
that is, other explanations. Most findings can have a multitude of explanations.

17.2. COMBINATORIAL MATCHING 145

failure” issue template and answers the question about “tremors” with a
“yes”, the system could include the “hyperthyroidism” issue template auto-
matically, and thereby also include other fields for clinical findings relevant
to the “hyperthyroidism” issue. So a 0 value does have a function, albeit
indirectly.
If we introduce “general” templates that are used during initial workup to

cover all the symptoms and history elements that should be worked through
for every patient, these templates don’t correspond to any particular diag-
nosis, so all the finding-issue coefficients will be equal to zero. This is the
way we implement the initial database that Weed stipulates. Depending
on the entered value in this initial template, other candidate issues will be
pulled in and listed.

The conclusion is that we need to view the influence of findings
on the selection of diagnoses (issues) as consisting of two inde-
pendent parts: the influence of a positive clinical finding on the
selection or deselection of candidate issues, and the influence of
a negative clinical finding on the selection or deselection of can-
didate issues. These two influences are generally independent of
each other.

Issue-item coefficients

Each issue item (clinical finding) comes with its own set of coefficients that
are independent of any issue templates that may use the item.

Table 17.5: Issue-item coefficients

Coefficient Meaning

Cost An indication of the actual monetary
cost of answering the item question.

Delay Indicates how long it will take to
produce an answer.

Discomfort An indication of pain, discomfort, and
general scariness involved in answering
the question.

Applicability A set indicating applicability to
genders, races, ages, and so on.

The set of issue items to present to the user is determined by the selection
of candidate issues (which in turn are selected by other items), but the
order these issue items are presented to the user is largely determined by
the coefficients in table 17.5. The cheapest and quickest clinical questions
should indeed be answered first.

146 CHAPTER 17. MATCHING FINDINGS TO TEMPLATES

Another factor also has an influence on the order of the items, namely
the selective ability of the item. The more difference an item can make to
the set of candidate issues, the higher it should come in the item list.
Some tests are interdependent or exclusionary. For instance, you should

not do contrast imaging of the urinary tract within a couple of days of a
barium contrast study of the colon, since the barium will cloud the images.
One could imagine any number of expressions or coefficients to take care
of all such interdependencies, but that would be overkill. In most cases, it
would suffice with a short warning text as part of the template from which
you order these test. After all, we’re plucking the low hanging fruit here,
and we’re not trying to automate everything away.

Issue coefficients

Each issue template comes with its own set of coefficients, reflecting at-
tributes of the issue itself.

Table 17.6: Issue coefficients

Coefficient Meaning

Prevalence An indication of how common the
issue is.

Urgency Indicates how urgent it is to diagnose
or exclude this issue.

Importance Indicates how important it is not to
miss this issue.

The “prevalence” coefficient should not be used to include or exclude
issue templates from the list of candidate issues, but can be used to order
candidate issues of equal likelihood. If, for instance, a certain set of clinical
findings point to both hypothyroidism and sleeping sickness with equal
likelihood, hypothyroidism should come first in the list, if we’re in Europe,
simply because hypothyroidism is more frequent.
The “urgency” coefficient elevates the consideration of certain issues that

must be quickly found if present, even if they are not the top contenders in
the list of issues. For instance, chest pain usually does not indicate a my-
ocardial infarction, but because it must be detected early if it is happening,
it is the first thing we should exclude.
The “importance” coefficient is similar to the “urgency” coefficient, but

indicates that the issue definitely should be considered, even if it doesn’t
have to be immediately.

Chapter 18

Document tree

There’s logic in how we reason. This is how you persist that
logic in the system.

In the section on receiving results (section 12.8), I described how each
received result must include references to all other documents and results
its conclusions are built upon. In the document structure we have in current
systems and that I described on page 73, that is quite impossible to achieve.
The relationships simply aren’t in place to do that.
What we need instead is a document structure in the application that

mirrors how decisions and documents in clinical practice depend on each
other. As an example, when I write a referral to a specialist for a patient
with some as yet undefined problem of the liver, I’ll probably send along
some lab results and the protocol from an ultrasound examination of the
liver. This is shown in diagram form in figure 18.1
In this figure, the top-most element has a double border to designate that

it is a “root”, in other words, an element that is not owned or included by
any other element. The significance of this will become clear later.
In my example, the specialist performs a liver biopsy and sends it off, then

later gets a report from the pathologist about the tissue sample, then finally
uses that tissue report and the ultrasound protocol I sent him, together with
his best judgement, and writes me a reply to my referral.
In my referral, I include the ultrasound protocol and a lab report. His

reply includes the pathology report and the ultrasound protocol I sent him.
In his report, he refers to the ultrasound and the pathology report, but

147

148 CHAPTER 18. DOCUMENT TREE

Figure 18.1: Referral with two included documents

he never needs to refer to the lab results, so only the ultrasound and the
pathology report will be referenced in his reply to me.

His reply will also refer to and include my initial request. So what we’ll
see in the record system after receiving the report will look like figure 18.2.
Also note that the report from the specialist is now a “root” element with a
double border. The request I sent to the specialist has lost its “root” double
border since it is now referred to by another element, the report.

Figure 18.2: My system after receiving a reply to my referral

149

If the system I’m using had a list of “root” elements, that list would
initially hold just one entry, the request in figure 18.1. Once I got a re-
port back from the specialist, that entry would disappear, since it’s not a
root any longer, and be replaced by an entry for the report back from the
specialist, as in figure 18.2.
So, what does this mean in clinical terms? Each root is an independent

problem, an issue, something we should keep an eye on or react to. After
writing a referral, the referral becomes an item to watch, to keep an eye on,
until it results in a report back. As soon as the report comes in, the referral
can be removed (which it automatically is, since it becomes referred to by
the report) and does not need any attention anymore, but the report itself
now becomes an item of interest. That report remains an item of interest,
a “root” element, an item in the list, until some other item is created that
makes use of it, and it becomes part of a larger, higher-level reasoning.

Figure 18.3: The document tree after writing the note

If I read the report from the specialist and make a note of that in the
records, write a letter to the patient, and create a prescription, while re-
ferring to all three in my note, I will have replaced the root, that is the

150 CHAPTER 18. DOCUMENT TREE

element to keep an eye on, with that note. The new relationship will look
like in figure 18.3. In this tree, the note itself becomes an “item of interest”.
Clinically, this makes sense, since we need to act on it, make it part of
something else, classify it as part of a healthcare issue. Maybe that issue
could be “liver problem”. If we add that high-level root to the records, it
will look like figure 18.4.

Figure 18.4: After creating the issue “Liver problem” at the top level

This high-level healthcare issue could also be diabetes, hypertension, or
schizophrenia, for instance. It could also be a symptom which hasn’t been
clearly assigned to an issue yet, such as “headaches” or “exhaustion”. It
could also be an incoming request that hasn’t been seen and handled yet.
The list of root documents forms an excellent overview of the patient’s
current issues and any elements that are not yet referred to by any other
elements. New incoming results will therefore automatically show up in
this list and stay there until someone acts on them. As results are acted

18.1. THE ATTENTION LIST 151

on, and therefore linked into other actions as subdocuments, they disappear
from this list. The only way to remove an element from the list of things
“to keep an eye on” is to act on it in a way that makes that element part
of a larger whole. The very action on the element removes it from the list.
This list fills many of the functions we see in the list of “unsigned” items in
current systems, but in a much more sensible way.
Another way of looking at the inclusion of documents into other docu-

ments, is that they are interdependent. The higher level document depends
on the lower level documents. If any documents that contain judgement
calls or measurement values turn out to be incorrect, then any other docu-
ments that refer to them also become suspect. This is inherent in medical
reasoning and should be reflected in the document architecture of the EHR
system, as it is in this design.
If we start from the top, instead, then we first read my note with my con-

clusions about the liver problems, and from there we can find and view un-
derlying documents, the one from the specialist, and in turn the pathology
report. Clearly, we can reach all details that were used in any conclusions
this way. Any conclusions that are not adequately based on other findings
will stand out as a sore thumb.
Interestingly, we can only reach the details that have a direct or indirect

relationship to the top level issue we start with, which eliminates a lot of
irrelevant information from the context of a particular issue or result. The
details that we don’t see as part of an issue tree will be shown as part of
another issue tree, or if they are entirely free-standing, they will be shown
as roots in the attention list.
Elements can have several parents, i.e. be part of several trees at the

same time. This is logical, since the same lab result or specialist report
can have a bearing on more than one issue. Everything that this shared
element depends on will automatically also become shared between both
issues.

18.1 The attention list

I’ve mentioned the “attention list” several times now, but it’s necessary to
expand on what this means. To do that, I’ll go through the same example I
used in the preceding to illustrate how the document tree is built, but this
time accompanied by a description on how the “attention list” evolves.
The “attention list” fills the function of overview over the patient’s issues,

while at the same time filling the function of a list of “unsigned items”
as it is implemented in current systems. In fact, it turns out that there
is no definable difference between “issues” (or “diseases”, or “problems”)
on the one hand, and “unsigned” incoming results on the other. Both

152 CHAPTER 18. DOCUMENT TREE

concepts are primary elements of attention and have many similarities from
an information conceptual standpoint.

Figure 18.5: Having only written the referral

In figure 18.5 we have just created the referral and included two docu-
ments in it, a lab result and an ultrasound report. The referral itself is a
top level element, a root of the tree, and will therefore also appear in the
attention list at the top left. When the doctor opens the record, her atten-
tion will be drawn to this referral, indicating that it hasn’t been replied to,
or made part of another attention item in any way. It’s freestanding and
calling for attention.
In figure 18.6 the issue “Liver problem” has been created by the doctor,

and the referral she just wrote has been made a part of that issue. Since
the root of the tree is now and issue element called “Liver problem”, that is
the only attention item shown in the list in the upper left.
The specialist receiving the referral, the “referee”1, receives one docu-

ment with two subdocuments as shown in figure 18.7. The referee then
creates a reply document which contains links to the referral document,
the pathology report, and the ultrasound report that was sent in by the

1“Referee” is ambiguous, I know. It could mean the patient being referred, or the
doctor receiving the referral, but in this text I will use it to mean the latter. I have no
other word for that doctor, while the patient can always be called a “patient” instead.
So that’s what I’ll do.

18.1. THE ATTENTION LIST 153

Figure 18.6: The referral has been made part of an issue

Figure 18.7: The document as received by the referee

154 CHAPTER 18. DOCUMENT TREE

Figure 18.8: The document as returned by the referee

referring doctor. The document set that the referee finalizes and send back
looks like in the figure 18.8.
When the document is received by the referring doctor, it is linked into

her system as shown in figure 18.9. Both the referral and the ultrasound
report were already present in the receiving system, and are not duplicated.
The reply is simply linked to those preexisting documents. The pathology
report and the reply itself are added to the document tree. Nothing in the
existing tree refers to the reply element, so it becomes a second root of the
tree (the first one is “Liver problem”), and is added to the attention list.
The fact that the reply refers to elements that are already a part of the tree
(the referral and the ultrasound report) does not in itself make the reply
element part of the tree, allowing us to have it shown in the attention list.
When the receiving doctor looks at the attention list, she can select the

reply from that list, write up a note with her conclusions, base it on the
reply, and then write a letter to the patient, and a prescription for a suitable
medication. The result will look as in figure 18.10. The very act of basing
her note on the reply to the referral makes the reply a child node and
removes it from the attention list automatically. The note itself becomes a
new root and will show up in the attention list in figure 18.10.
The note is in the attention list since it hasn’t been yet made a part of

a greater whole; it hasn’t been properly put into a context. The doctor
now selects the note, then links it to the proper issue, in this case the issue
“Liver problem”, and so makes it a child of “Liver issue” and automatically
removes it from the attention list. The result is an attention list containing
a single item, the issue “Liver problem”, with no other outstanding items

18.1. THE ATTENTION LIST 155

Figure 18.9: The reply has arrived

that need attention. Depending on the implementation, this step could be
made part of the actual writing of the note in the first place, making the
linking to an issue automatic.

One question arises, namely how to view the letter to the patient and
the prescription. Is the letter based on the note, or is the note based on
the letter? The same question arises when we think of prescriptions. It is
clear that if the letter has no relationships to anything, it should be in the
attention list so that the user is prompted to place it into the right context.
The same goes for prescriptions. But if there is a link, which should be
child and which should be a parent?

It turns out that elements such as letters or prescriptions are a bit pe-
culiar, they’re not below or above other elements such as notes, but more
to the side of them. Since it would be clinically absurd to put the letter
as such as an attention item, or the prescription as an attention item, I’ve
chosen to always make them children of any relationships they are in.

156 CHAPTER 18. DOCUMENT TREE

Figure 18.10: The doctor creates a note, a letter, and a prescription

18.2 Encryption

We can add an encryption twist to this tree. Assume that each included
document at any level consists of a reference to the included document and
a decryption key so that the referred document can be read. This makes it
trivial to read any included documents if you have access to the document
that includes them, since that is where the decryption key resides. This
also makes it impossible to read a document if you haven’t retrieved it by
way of another document that includes it. The only way to enter the tree is
by way of a top level document which can be found in the list described in
the previous section. From there, you can descend the tree (yes, it’s upside
down with the root at the top), accessing underlying documents one level
at a time.
It turns out that this is a very desirable property. If a document has been

18.2. ENCRYPTION 157

Figure 18.11: After the note is linked to an issue

used as basis for another document, that base document will always remain
accessible to that derived document, but not to any readers who have no
access to a derived document. In more clinical terms, you can say that if you
have access to an issue, such as diabetes, you will automatically have access
to everything that is relevant to that issue. If you have access to another
issue, such as schizophrenia, but not diabetes, you will not have access to
any documents that are part of the diabetes tree, unless those documents
are also part of the schizophrenia tree. You will not automatically know
that a particular document is part of a tree you have no access to, but that’s
how it should be. Parents know about their children, but the children do
not know about their parents.
The document-tree design also neatly implements the abstraction and en-

capsulation I discussed in the section on encapsulation (chapter 3) earlier.
It turns out that this abstraction and division into levels that I described

158 CHAPTER 18. DOCUMENT TREE

in some depth in that section happens continuously with every new referral
or response. The document-tree design very closely mirrors how we think
about referrals as doctors, which is very different from how it is imple-
mented in current systems.
In a paper-based medical practice, I would write a referral or response

and physically include copies of documents I refer to, such as lab reports and
X-ray protocols. Implicitly, if you have access to the referral (by opening
the envelope), you have access to the copies of documents I included in the
same envelope. Since the receiver will base his or her conclusions in part
on those included documents, the receiver needs permanent access to those
documents. In other words, once you’ve sent them, you shouldn’t be able
to take them back.
In current computerized medical-record systems with electronic transmis-

sion of referrals and responses, this generally turns out to be impossible.
There’s no provision for attachments in that sense. The solution for the
problem seems to be to create huge stovepipe systems, such that the receiver
of a referral or result can go scrummage for himself in the record system of
the sender for those documents that couldn’t be attached in the first place.
Worse, this seems to be the major reason for large unified systems.

In other words, one basic design flaw is incompletely compen-
sated for by another, even bigger, mistake.

This poorly conceived arrangement leads to absurdities. In order to give
the receiver access to material I’m referring to, I have to allow the receiver
full access to a large part of the sender’s system. If I ever revoke that
access, the access to the referred documents is also revoked, removing any
possibility of later, on the receiver’s side, verifying that the conclusions
were correctly based on included documentation.

I describe the implementation in detail in appendix A, so the interested
reader can see how the whole thing really works.

Chapter 19

Transitioning and deployment

How do we get from here to there without climbing mountains
or upsetting the apple cart?

If we compare the systems of today with the system we ought to arrive at
in the future, they’re quite different. Everything needs to change, including
the role and type of work physicians and nurses do. We can’t expect this
change to be achieved in a single step, nor can we expect the change phase
to be limited to a certain period in time. Instead, we must set up a system in
such a way that it can be gradually introduced with gradual improvements
in processes and outcomes. The system must also inherently lead to further
improvements. Instead of climbing a mountain to get to the valley beyond,
we need to find a road around the mountain that is always sloping down.
Every change we need to introduce must produce immediate payback to all
involved parties, or at the very least not introduce any net negatives. So,
let’s go over the phases of this change.

19.1 Phase 1, guidelines

A large number of guidelines for most common complaints and diseases
already exist in one form or another. One particular guideline is discussed
in section 8.4. From that discussion, we can conclude that the contents
of the guideline is not the problem, as far as applicability is concerned,
but the medium and presentation are. It’s too hard to locate and use a
guideline that is presented in a passive form, even on the web. Also, as

159

160 CHAPTER 19. TRANSITIONING AND DEPLOYMENT

already discussed, any use we make of it leaves no footprint in the medical
record, making it hard to verify the use after the fact.
Another advantage to starting with the automation of guidelines is that

the implemented guidelines will be useful from the start, even if the avail-
able number is limited. Whatever else is covered by a “general template”
as found in most current EHR systems, can be just as easily covered us-
ing a general “issue template”, with the added and considerable advantage
of having the clinical findings and history elements correctly coded from
the start. In other words, even if the initial issue template does not have
the capability to automatically analyze and suggest differential diagnoses,
the data entered in such an early implementation can still be useful in the
future, as more advanced analytical tools come online.

Replacing old fashioned passive keyword based templates in
current EHR systems with the structured issue templates of an
issue oriented medical record makes data entry easier and quicker,
while at the same time structuring the data in a way that makes
it useful for future tools. It also enables full assistance in the
creation of correct referrals and orders.

Having implemented at least a few guidelines as issue templates, already
allows for much more efficient and safe prescriptions of medications, cre-
ation of referrals, creation of X-ray orders, and lab tests. These features,
and the concomitant reduction in mistakes and double entry, will result in
huge improvements in efficiency of delivered care, reduction in errors, and
higher consistency and quality of care.
These issue template based guidelines also provide the ability to warn

for contra-indication, and they also enable much more useful and accurate
management information, by being easily counted and tracked. Each issue
template, by its very activation for a particular patient, implies that the
issue the template describes can be regarded as “reported” without further
intervention by the user.

19.2 Phase 2, combinatorial matching

Once there is a substantial amount of issue templates in use, it makes sense
to automatically select matching issues from the set of initial findings. This
process would be very similar to the “combinatorial matching” algorithm
Weed describes [6], but the source of the items is essentially different.
Weed builds a single engine that holds all the items needed for an initial

workup, then lets that single engine select the issues that match those initial
findings. This requires one single code base to be up to date on all possible
initial findings, and all possible issues. In theory this should work, but in
practice, it will not be maintainable.

19.3. PHASE 3, ANALYSIS AND FEEDBACK 161

A more maintainable and scalable system would delegate the definition
of items, and the definition of issues, to distributed specialists. The execu-
tion engine would dynamically build up the set of items to present to the
user for the initial workup after extracting this set from all available issue
template definitions. Similarly, the selection of issues from the set of re-
sponses to the items should be dependent on the definitions of all included
issue templates. This allows the totality of the system to dynamically up-
date itself depending on all the knowledge inherent in the contributed issue
templates.

19.3 Phase 3, analysis and feedback

Any computerized decision making system needs to have a feedback loop
built-in, so that the accuracy and precision can be improved continuously
and automatically. If a number of physicians use the same system, the
system will, as it were, make all the users learn from each other’s experience
and mistakes.
At the same time, the system needs to implement checks and balances, so

that the automatic adjustments don’t make the system worse or introduce
errors, as can easily happen if the feedback system hunts for sub optimiza-
tions to the detriment of global optimizations. This could happen if a
particular system very rarely, or never, sees particular issues, and becomes
trained not to see that issue at all, once it actually presents itself.
One way to detect and correct such elimination by optimization is to

introduce validation cases, consisting of unusual patient case reports where
the ultimate and correct diagnosis is known, to train the system and verify
that they aren’t missed. A great way of picking up such validation cases
is to save those cases that were in fact missed by the system. Using these
validation cases across a number of systems will make all the systems, and
thus all the users, learn from everybody’s experience and mistakes.
Another important element is a review by expert humans of the adjust-

ments made to the parameters in the combinatorial database. This has a
twofold function:

1. To detect and correct feedback adjustments gone wrong. Every algo-
rithm has its weaknesses, and an expert human mind can detect even
unforeseen errors this way.

2. To learn from the adjustments. Each adjustment reflects a mismatch
between the expert knowledge of the authors of the guidelines and
combinatorial parameters, on the one hand, and the reality of clinical
findings in disease, on the other. Some instances of adjustments will

162 CHAPTER 19. TRANSITIONING AND DEPLOYMENT

be signs of hitherto unknown clinical correlations. Some new syn-
dromes in the form of new groupings of clinical findings can even be
flagged entirely automatically by the use of Kohonen maps [3]. The
appearance of new groups in such a map could point to a need for
new issue templates for that particular group.

Part IV

Appendices

163

SUMMARY 165

Summary

These appendices are completely optional reading. (As if the entire book
wasn’t completely optional reading, but you know what I mean.)

App. A: Document-tree design

A more detailed look on how medical documents relate to each
other.

Whenever we as doctors write a summary or a reply to a referral, we
always base our conclusions on other documents. It could be lab reports,
radiology reports, patient history, clinical examinations, or other replies to
referrals. The conclusions we reach are only as valid as those source docu-
ments are, with the added ingredient of our own competence and cognition.
When we sign off on a conclusion, we do that on the implicit condition that
the underlying documents were produced in a similarly considered and reli-
able way. If any of the underlying documents turn out to be false, erroneous,
or ill considered, our conclusion also becomes, at least potentially, invalid.
All this needs to be reflected in the way we manage documentation, not
just having all the documents in an EHR system thrown in a heap, but by
having explicit dependencies of some documents on others.
If we look at a single note in the medical record that contains a conclusion

made by a doctor, based on a lab report and an ultrasound protocol, this
relationship can be viewed as in figure A.1. The “conclusion” note itself
contains a text where the doctor describes what the lab report and the
ultrasound protocol mean, which diagnosis is made, and recommendations
for further workup or treatment. The note with that text also contains links
to the mentioned documents, represented as the downwards pointing arrows
in the diagram. These links make the dependency of the conclusions in the
note explicitly conditional on the content of the two underlying documents
(lab and ultrasound).

167

168 CHAPTER 19. TRANSITIONING AND DEPLOYMENT

Figure A.1: A single note, dependent on two underlying documents.

As each level of medical specialist refers to a number of base documents,
the specialist provides a summary at a higher level than the parts that form
the basis for the new summary. The higher level summary of the lower level
documents form the same kind of abstraction I described in the chapter on
object oriented knowledge management (chapter 3).
This increasing level of abstraction building on lower levels of abstraction

extend all the way out to the patient, who gets the ultimate summary of
earlier and more detailed summaries. In figure A.2 I’ve shown that if the
patient has access to the root element, the issue itself, he automatically has
access to all underlying documents tied to this issue.
If a particular element in the document tree is still on the attention list

and not linked to the issue (see page 151 for the discussion on the attention
list), and the patient has direct access only to the issue itself (“liver problem”
in figure A.3), the patient will not see the not yet handled element since
it is not part of the tree the patient has access to. If your policy says
that patients should only see parts of the record that have been seen and
handled by a doctor, this is the perfect solution.
If, on the other hand, you want to give the patient explicit access to a not

yet handled element in the record, you can do so, which automatically also
gives the patient access to the underlying documents that element depends
on. See figure A.4.
Finally, if and when the new note is handled by a doctor and becomes

part of the tree rooted in the issue, the patient gets access to that part of
the tree as well, automatically. See figure A.5.
Interestingly, elements at any level which were never part of summaries,

or at least not part of any summary the patient or doctor at a higher level

APP. A: DOCUMENT-TREE DESIGN 169

Figure A.2: Patient can have access to the root document, the issue.

ever received, become invisible to this process, which solves another prob-
lem, namely how to handle false starts or abandoned hypotheses. Unless
these abandoned trails are referred to in any summary that is in the tree
we’re unravelling, they will become invisible, as they should be.
This solves several problems, not least of which is how to hide guesswork

and scary little side trails from the patient, if the patient has access to the
records. If the scary little side trail had no consequences, it won’t become
part of a trail of reasoning, and thus not a part of the issue tree, so it won’t
be seen. It’s as simple as that.
Another problem we’re solving with this pattern is the separation into

distinct record systems for different specialities. One way of doing that
is hiding all the internal details in a system and only issuing summaries
from one speciality to the next. With the document-tree principle, we’re
doing the same thing but on a continuous basis, document by document,
summary by summary, making the process much more pervasive, and at
the same time with no particular border drawn around specialities.
But it gets better still. If each summary contains not only the references

to the underlying documents, but also the decryption keys (symmetrical)
for those documents, the underlying documents could be fully protected

170 CHAPTER 19. TRANSITIONING AND DEPLOYMENT

Figure A.3: The patient sees only handled elements.

from view from anyone who has no reason to see the document. And as
“reason to see” the document counts being in the possession of another
document that refers to it. That document in turn can only be decrypted
if the key is retrieved from yet another document higher in the tree referring
to it.
If a particular document is also used in a scientific study of some sort, it

will become part of a collective summary for that study, and thus reachable
from the study side. The same documents may, but don’t have to, be part
of some clinical summaries for other purposes. The meaning and function
of “primary data source” used in the performance of clinical studies becomes
clear and explicit. High five!
It’s turtles all the way up, but sooner or later you do reach the last turtle,

which could be the patient, the GP, or some kind of database, or a clinical
study setup. Each patient could have more than one root, depending on

APP. A: DOCUMENT-TREE DESIGN 171

Figure A.4: The patient can be given direct access to unhanded elements.

problem areas.
If documents are arranged this way, any constituent documents can have

their decryption keys “forgotten” as long as they are part of a higher level
summary. Orphaned document keys could be saved in a special database
for useless facts, or simply aged out and discarded.
Interestingly, this implies that all documents, except the very top level

root documents in the tree, can be stored anywhere, even right under the
nose of the NSA. As long as the root documents are safe, the other doc-
uments can’t be decrypted. Root documents themselves can also be set
free, as long as the key to each root document is safe. This makes the
management of the (momentarily) ultimate keys quite tractable.
The act of “signing off” on received documents, which today is a pretty

meaningless hassle, also achieves meaning. As it is today, we look through
new results, sometimes signing off on them, but we’re never really sure

172 CHAPTER 19. TRANSITIONING AND DEPLOYMENT

Figure A.5: When the element becomes handled and linked, the patient
also gets access.

if there is an action presumed on our part, or if the simple viewing of a
result has meaning. This confusion is reflected in the implementation of
current systems, such that some systems flag results and reports we haven’t
seen (literally, just like “unread mail” in an email program), while other
systems expect us to click a “sign” button, and still others implement both
methods in a crazy mix of contradictory messages. If new results instead
are viewed as document references that are not made a part of another
higher level summary of some kind, then the action expected of the doctor
to remove a result or report from the “new” list, is to incorporate that
reference in a summary, which could be a note, an outgoing referral, or
anything similar. With this system, the actual action that makes actual
use of the result or report, forms the signature. There’s no ambiguity left.
Instead of “unread” versus “read”, we have “not handled” versus “handled”,

APP. A: DOCUMENT-TREE DESIGN 173

or “unused” versus “used”, which makes a lot more sense. Every report
requires some kind of disposition, or it will stay in the list of the “things
that need attention”. Neat. (There’s a more in depth discussion on these
lists of “unused” elements, which I call “attention lists” on page 151.)
The documents as such, in their encrypted form, can be stored in a

distributed-hash-table form or similar, for maximum accessibility and re-
dundancy, with minimal requirements on local database resilience.

Document checksum

What I’m describing here is the technical design to persist these dependen-
cies, while it’s up to the designers to make this process transparent and
painless to the user. It could be as simple as a clickable symbol inside a
document to open any included references to other documents.
First, we need a unique and reproducible reference to documents in gen-

eral, and the most obvious choice is a checksum on the canonicalized con-
tents of that document. Yes, that was a mouthful, but it can be explained.
A checksum is simply a sum made from the actual text of the document

using a pretty complicated arithmetic process.
A “canonical” version of a document, is a document where we’ve nor-

malized spaces and other invisible characters, so that differences between
systems should not influence the value of the checksum. We can, for in-
stance, stipulate that all trailing spaces in lines should be removed, and we
could specify a particular character encoding in the file, and how the end
of lines should be marked1.

Document signature

A document signature is nothing but an encrypted form of the document
checksum, where the encryption is done using a public-key system, with
the private key of the person signing the document. First we create the
checksum (hash) of the document:

SHA(M) = MH

Assuming our signer is good ol’ Alice, we encrypt this number MH with
Alice’s private key PKpriv(A) to get the encrypted version:

1As an example: some Unix-like platforms like OSX use a single LF character at
the end of each line, while Windows and DOS use a pair of characters: CR and LF.
Before calculating the checksum we must convert to one of these versions and see to it
we always do that, regardless of which machine we’re doing the calculation on. If we
didn’t, a document looking exactly the same to the user would result in two entirely
different checksums on OSX and on Windows.

174 CHAPTER 19. TRANSITIONING AND DEPLOYMENT

MH
PKpriv(A)−→ MS(A)

The resulting signature MS can be stored as a pair with the original
checksum MH in a database, allowing us to look up who signed off on a
referenced document even without knowing what that document contains.
This can be very useful at times. Note that the digital signature MS con-
tains a reference to the owner of the key, so the identity of the signer can
be recovered from the signature.

References summary

We can refer to any element from any other by using the document check-
sum as an identifier. The document can be stored anywhere convenient,
and actually locating the document by this identifier can be done in any
number of ways, for instance by using distributed hash tables.
The documents should always be stored in an encrypted form, so to

access the contents once the document has been located, you also need a
decryption key. Each reference to a document must therefore include two
elements: the document reference (which is equal to its checksum), and the
decryption key. I’ll use symbols as in the following table. The letter “M”
denotes “message” in crypto lingo, but in this case the “message” the same
thing as “document” or “element of the record”.

Table A.1: Symbols for document references.

Expression Meaning

M The clear-text document.
ME The encrypted document.
MH Document checksum (hash), which is

also its identifier.
MK The symmetric key used to encrypt

and decrypt the document.
MS The digital signature on the

document, created by the originator of
the document.

MR The reference to a document from
another document that is dependent
on it.

With this notation, we see that a reference to a document must include
two things: the document identifier (so we can locate it), and the symmetric
encryption key (so we can read it):

APP. A: DOCUMENT-TREE DESIGN 175

MR = {MH ,MK}

The document itself, in its encrypted form, is stored together with its
identifier, so it can be located:

{MH ,ME}

The document signature can be kept separately. It also needs the docu-
ment identifier so we can find it and link it to the document it signs:

{MH ,MS}

Since the checksum was calculated on the plain text form of the docu-
ment, it cannot be verified to be correct until after the decryption of the
document. The same limitation applies to the digital signature; the docu-
ment must be decrypted before it can be verified.

App. B: About the author

What happened to me, to make this book happen to you?

There’s no avoiding a section on who I am. This book is based almost
entirely on my own experiences, and this both liberates me and forms a
limitation on the applicability of my conclusions. There must be a large
number of situations where my descriptions are invalid, but I have very
little other literature to base any comparison on. So I’ll simply have to
describe my experiences and let you draw your own conclusions as to why
I’m saying what I’m saying. I’ll include a lot of details, but I’ll try to be
brief, since this isn’t supposed to be a biography, but a book about the
EHR.
I was born and grew up in Stockholm, Sweden, attending Stockholm

University between 1969 and 1971, studying Mathematics, a sprinkling of
programming (ALGOL, if anyone remembers that), and inorganic chem-
istry.
In 1971 I moved to Ghent, Belgium, studying medicine at the state uni-

versity between 1971 and 1978, graduated with honors. During my last
year of internship, I once got the task of reprogramming a small part of
an analysis automation package for clinical chemistry on a PDP–8 running
Focal. I managed to set fire to the power supply by issuing a bad monitor
command. At least, that’s what everyone around me assumed. The timing
was perfect.
Between 1978 and 1983, I did a general surgery residency at the same uni-

versity. This included six months of orthopedics and quite a bit of intensive
care. Vascular and thoracic surgery was also part of the daily work. Train-

177

178 CHAPTER 19. TRANSITIONING AND DEPLOYMENT

ing didn’t include training in cardiac surgery as such, but each resident
assisted hundreds of coronary bypass and valve replacement procedures,
and a smaller number of pediatric cardiac operations.

Figure B.1: The main unit of the HP 2100A mini computer. (Photo cour-
tesy of hpmemory.org, Marc Mislanghe.)

During this residency, I stumbled across an HP 2100A mini computer in
a back room of the ICU. This machine had an A/D converter, a huge 14
inch removable disk and a fixed hard disk of the same size, each almost
2.4 megabytes in capacity. The RAM was 32k words (64k byte), and the
clock frequency just a smidgen under 1 MHz. I found terminals and other

APP. B: ABOUT THE AUTHOR 179

peripherals in the basement and other departments and hooked them up. I
ended up with the teletype console which was already in place, a Tektronix
vector graphic terminal, and a couple of HP terminals, and cheaper termi-
nals, I’ve forgotten the name of, and a couple of little 8" (or so) graphic
displays with 256 x 256 pixels1.
The A/D converter had 128 channels and was still hooked up to a number

of bedside monitors in the ICU. It used DMA and kernel processes to write
directly to disk and could read at 50 samples per second.
The entire system was housed in two 19 inch racks bolted to the ground.

When the hard disk got going real well, it would have tipped over the racks
otherwise.
The way to boot this monster was interesting. Assuming it lost all track

of reality, the first thing you had to do was insert a physical key and unlock
the last 32 words in memory, so you could punch in the first bootstrap
loader, the “loader loader”, using front panel illuminated buttons, all in
binary. (After about a hundred times, I knew this boot loader binary by
heart.) After entering the boot loader binary, remove the key, locking down
the memory2, set the instruction counter to the start of the boot loader,
insert the disk operating system boot loader paper tape in the paper tape
reader, then hit “run”. The paper tape ran through the reader at an amazing
speed, hitting the wall almost two meters to the left. Then the disk boot
got going, the RTE-III “Real Time Executive” was loaded, and after a while
you got the satisfying hum and clunk from the teletype.
Residents had to stay over in the hospital two or three nights a week,

while not getting any days off, so we spent 80 or 90 hours a week at work.
We slept some, of course, but never enough. Once I found this HP 2100, I
hardly ever slept, instead I spent my nights figuring out how to reconfigure
it using “system generations”, and how to program it. This is the first time
I encountered the phrase “If all else fails, read the instructions”, which was
written on the title page of the HP 2100A manual. There’s deep wisdom
in that.
Using Fortran on this machine, the first thing I wrote was a system to

store medical reference information. In the ICU, we had a lot of snippets
of tips and tables, like how much blood a patient is allowed to lose the first
hours after a coronary bypass, how long to leave a choledochus drain in
place, how to calculate cardiac output using the Fick method, and so on3.
I’d already programmed a Texas Instruments TI–59, one of the earliest

1I may misremember details, so please don’t kill me if that was 128 x 128 or maybe
even 512 x 512, but I don’t think so.

2Theoretically, this boot loader code should never be overwritten, since there was a
hardware lock on that region, but it still happened, and I never figured out why.

3I’m not going to explain every medical term here, since it wouldn’t add to the story.
If you want to know, there’s always duckduckgo.com.

180 CHAPTER 19. TRANSITIONING AND DEPLOYMENT

Figure B.2: A TI–59 calculator docked to its PC–100A printer. (Photo
Wikimedia Commons, John Crane.)

programmable calculators, to calculate cardiac output, pulmonary shunts,
and a few more little handy things. The TI–59 used little magnetic cards
that were fed to the calculator and pulled through it by a little electric
motor when you switched programs. For a while, I and the other residents
in the ICU used my TI–59, and we passed it from person to person. One
of the teaching staff had a PC–100A printer dock, which I used to program
some statistics for a while.

With the HP 2100A, I moved those calculations over to the mini com-
puter, added a lot more of our notes of collected wisdom, and set up a
terminal in the ICU nursing station. To retrieve information, I figured out
an indexing system so that every page of information contained a menu at
the bottom leading to other pages. I also built a subscription system so
that the residents that “subscribed” to my pages could get a printout of
everything that had changed since the last printout they’d gotten.
After this, I wrote a system that used the A/D converter to connect to

a bidirectional ultrasound vascular doppler machine, calculating and draw-
ing a blood flow curve of the aorta. Together with a measurement of the

APP. B: ABOUT THE AUTHOR 181

diameter of the aorta, this system could calculate cardiac output without
any invasive procedure. Neat and almost accurate enough for clinical use,
but not quite.
I also built a tool to make researching medical records somewhat easier.

This is the time before we started to disparage retrospective studies, so
we did a lot of those. We researched patient histories to find relationships.
Doing this was a lot of work, so I came up with a system that let you set up
a list of questions to work through for every medical record studied. Then
the answers were fed into the system and you could go play interactively
with the data to see what correlated to what. The statistics I implemented
were based on the Student T-test and the chi square test, but that was
pretty much enough. The user selected two different questions from the
list of questions, or data points, if you will, the machine then calculated
if there was any correlation between the answers for those two questions.
It took about ten seconds for a verdict of significance or not to come up
on the terminal. My dream was to let the machine run through all the
possible combinations on its own, but there was no way this could be done
with hardware that slow, or with my less than stellar programming skills
at that time.
The first study we used this for was a comparison of post surgery treat-

ments for esophageal cancers. We thought we had quite different results
from another university, and we couldn’t figure out why. I demonstrated
this to Thiery Anné, the lead author of the study [1] one night we were
both on call. I grabbed out of thin air what I thought was a ridiculous
correlation, comparing the outcome of surgery followed by 5-FU, a chemo
therapy agent which we used a lot, depending on location of the cancer
(top, middle, or lower esophagus), which I was sure had nothing to do with
it. This was about the third thing I showed him. The computer spit out “p
< 0.005”, and Thiery just laughed, saying “yeah, sure, as if THAT would be
right. . . great programming, man!”, and wished me luck finding the bug.
I spent the next two nights trying to locate the coding error, then finally
pulled out all the data, around a hundred patients, and recalculated the
whole thing by hand. It all came out exactly the same as the computer had
shown. That was the most important finding we had, and it was correct.
It explained the difference we saw between the results in our hospital and
that other hospital I mentioned, since our patients differed quite clearly in
how high in the esophagus the cancer was located. It was also the last time
we found anything as spectacular using that system.
During that period I also enrolled for engineering studies, and I got al-

most two years into it before I had to give it up. There was simply not
enough hours in a day, or a night, to do all this.
We did a lot of heart surgeries, sometimes up to three or four in a day,

and the main bottleneck was the ICU. Back then, a typical patient stayed

182 CHAPTER 19. TRANSITIONING AND DEPLOYMENT

on assisted ventilation up to 24 hours, then had to stay in the ICU another
two days or so. We only had a total of six ICU beds for vascular and cardiac
patients, so something had to be done about this. Extending the ICU and
hiring more nurses was out of the question. Other solutions needed to be
found.
Dr. John Kirklin at the University of Alabama had succeeded in reducing

the mean length of stay in his ICU down to eight hours by using computers
to run the infusion pumps. It turned out that if you continually adjusted
the flow of blood pressure stimulators and blood transfusions automatically
according to measured parameters, the patient achieved hemodynamic sta-
bility much sooner, and could be taken off the ventilator and moved to
medium care much quicker. This is what we wanted to do as well.
I was sent to the USA with two engineers to be trained in the program-

ming of a later operating system version, RTE-IV on the HP 1000 system,
a successor to the HP 2100A system I was used to. After that two week
course I went on with my wife, but without the engineers, to Birmingham,
Alabama, to watch how they did cardiac surgery there.
The idea was that the University of Ghent would also invest in more re-

cent computers, infusion pumps, monitoring, and staff, and do what they’d
done in Alabama, increasing the throughput of patients through the ICU,
while at the same time reducing complications4. But as we got back from
the trip we were told that there was no money to spend on equipment or
staff. I had figured on a career as a surgeon doing some space age stuff with
computers in the ICU, but it wasn’t to be.
In 1983 I quit the university and took over a general practice, patients,

house and all. At the same time, I started my first company which initially
sold TRS–80 computer games tapes through mail order. Soon after starting
the company, I wrote a very rudimentary home nursing application on a
TRS–80. Then I got an order to write a system to estimate cooling systems
for offices and computer rooms, which I did on the EACA Genie-III TRS–80
compatible system. That system ran both NewDOS and CP/M.
In the first few years, I sold a number of machines, including the Genie-III

machines, Goldstar computers (which were later renamed to LG) and one
of the first networks (based on TeleVideo mmmOST). I also wrote an ac-
counting program, a program to store patient record diagnostic codes, and
an insurance agent management program. Mostly, writing these programs
served to sell turn-key systems, which was a pretty good business back
then. I also programmed and installed a few industrial control computers
from Merlin Systems in the UK. Not much of peripheral electronics was
available at that time, so I also designed and built some minor electronics

4Anything that reduces time under anesthesia, or time spent in the ICU, is known
to reduce infections and other complications.

APP. B: ABOUT THE AUTHOR 183

like Whetstone bridges with differential amplifiers for Pt100 sensors, input
protection circuits, and relay boards.
Around 1987 I arranged a connection to Medline5 through some organ-

isation I’ve forgotten the name of in Köln in Germany, utilizing packet
switching to get there, and a search language I think was called “Diane”.
When they had a particularly difficult case at the university ICU where I
used to work, they called me and I did a literature search using my Medline
connection, then reported back over fax with a summary of what I found.
The very expensive fax machine I sold them for this purpose must have
been one of the first machines used in that hospital.
I could do a search like this in about an hour’s time total. I loved doing

this, but it ended a year or two later when the ICU got their own set of
Silverplatter’s Medline CDROMs to search through. I still think my results
were a lot better than what they could find on their own, though.
In 1990 I joined “Fidonet” and later ran what was then one of the larger

regional nodes6, using three regular phone lines and an ISDN basic rate
connection. Pretty bleeding edge at the time. With the computers I used
for this, I also wrote a communication system to deliver lab reports and
referral results to general practitioners and specialists. The system was
running the “Fossil 5” communication drivers and used a system I built
in the Clarion language and assembler to receive files from the labs and
deliver them to users when they called in. I actually had a form of end-
to-end encryption using symmetric keys that were exclusively stored in a
database at each end-user’s system. The client application, also written in
Clarion, even contained a rudimentary medical records system with daily
notes. I only charged the senders for the “stamp”; receivers got the whole
thing for free.
This system was pretty darn good, but I had absolutely no time or talent

for marketing, so I never got beyond about ten or 15 subscribers. In 1994
I was approached by a company called “MediBridge” who had the backing
of the Belgian telecoms giant Belgacom and the University of Ghent. They
had a similar product but built on Solaris systems and packet switching.
The end result was way more expensive than my system with less function-
ality and reliability. My system’s existence had hindered them in several
sales where there was always at least one doctor who had seen my system
and didn’t want theirs. So MediBridge offered me a job and some cash if I

5Medline is the world’s largest collection of medical publications, usually with an
abstract, seldom with full text articles. It was the online incarnation of “Index Medicus”,
the paper-based index of published articles. Medline is part of the US National Library
of Medicine.

6For the old-timers out there: my node address was 2:291/1906. Now, that’s some
addressing for real men, you DNS huggers!

184 CHAPTER 19. TRANSITIONING AND DEPLOYMENT

let my system die and started working for them instead. This was my way
out of my general practice, so I took it with both hands.
During the next year, I was also hired by the University of Ghent to

do the Belgian version of the “Episode of Care Summary” specification for
electronic messaging interchange. My boss, George De Moor, was then
head of the Technical Committee 251 at CEN, the European Standards
institution, which led to me being an observer there for almost a year.
In the same period, I became an advisor to the ACC, an organization

of around 50 private hospitals in Belgium, to help with the development
of their new medical records system, the AZIS–2000. Here I learned from
the inside what it is like building a medical record system in an organiza-
tion that basically had no idea what they were doing, and really couldn’t
care less. I walked out of there alienated, angry, disappointed, and very
disillusioned with vendors of EHR systems.
After a few months of writing a boring and not very good system for care

facilities for the elderly, I got a job managing the IT for the department of
epidemiology at the Ministry of Health in Brussels. My job there was to
migrate them fromWindows for Workgroups to NT, while also making them
aware of a newfangled thing called “security”, and things like “firewalls”. A
major reason for hiring me instead of any old IT manager was that the
IT people could get absolutely no respect from the doctors that made up
most of the users there. The place was like a cat fight, with hissy fits
all around, walls of silence where there was no screaming, and absolutely
nothing being achieved when it came to computing. It was assumed that
my medical background would make the users have some respect, and it
worked. We did get some order in the house, better equipment, and more
security. I loved that job, conflicts and all. The pay was shit, though, it
being the government.
I stayed there a year, then went on to “Real Software”, where I ended up

in a warehouse at Zaventem airport trying to straighten out some really
shitty VBA code for half a year. This is where I learned SQL Server pretty
well. The next six months after that, I spent writing another medical com-
munications package with some real asymmetric crypto for use in reporting
in a clinical study of some new psychiatric pharmaceutical.
From Real Software, I went to C3, a small startup doing ICU software,

where I wrote some of the server side code in C++ for messaging and for
script execution. This lasted until the summer of 2001, when I decided to
move back to Sweden.
I got a job at Profdoc AB, one of the major vendors of medical records

software in Sweden. My task was to design and implement a communication
system allowing transfer of referrals, reports, lab results, and electronic
prescriptions between any number of large and small client systems. If
you’re keeping count, this was the third such system I developed. This one

APP. B: ABOUT THE AUTHOR 185

was also based on asymmetric crypto. While my first system was based
on Clarion and assembler, and my second system on C++, this system was
entirely written in Borland’s Delphi, since that was the house language. It
took me a little more than three years to build this system, and, as far as
I know, it’s working just fine still today.
In the years that followed, I went back to work as a GP part time in

Sweden, while also developing a few minor applications. In 2008 I got hired
as a contractor to develop a model application in C# for another division
of Profdoc. The idea was to set up an architecture that they could follow
when rebuilding some of the legacy applications they had in house. I did
this for about one and a half year.
In april 2010, I suddenly got the idea of how a medical record should

really work, an idea so different from how the EHR systems of today are
designed that I simply had to develop a prototype just to see if it could be
real. I made the first version of this system which I call “iotaMed” (“Issue
Oriented Tiered Architecture for Medicine”), for the iPad in Objective-C.
Ever since then I’ve been refining the idea and writing about it in different
media.
I thought the advantages of my iotaMed would be obvious to everyone,

but I was wrong. Doctors, in general, understand the idea and find it
obviously better and entirely a new thing. They also understand that it
is very different from what we have with current EHR systems. Everyone
else, that is administrators and developers, seem not to see neither the
difference, nor the point. I keep getting the remark that “we already have
that”, or “nobody ever asked for that”, sometimes both at the same time
from the same person. This attitude is both infuriating and enlightening.
It clearly explains why the systems we keep getting from these developers
are so useless to us. It’s as if our (the doctors’) way of thinking and working
is so alien as to be invisible to them.
I then did what developers always do when met with a seemingly unsolv-

able problem; I introduced another level of indirection, or as other people
say, took a step back. I realized I first need to explain what the problems
are before I can offer the solution. You can’t answer a question that hasn’t
yet been asked.
So this brings us to today and this book. It is intended to provide the

right questions for a change, and maybe a few of the possible answers. I
will only touch on the iotaMed design occasionally, since that isn’t what
this book is primarily about. Rest assured, however, that iotaMed resulted
from the thinking that also formed the basis for the book.

Bibliography

[1] T Anné, L Berwouts, M Wehlou, G Berzsenyi, and F Derom. Surgical
treatment of oesophageal carcinoma. experience between 1965 and 1980
(author’s transl). Acta chirurgica Belgica, 82(4):359, 1982.

[2] Frederick P Brooks Jr. The Mythical Man-Month, Anniversary Edition:
Essays on Software Engineering. Pearson Education, 1995.

[3] Teuvo Kohonen. Self-organized formation of topologically correct fea-
ture maps. Biological cybernetics, 43(1):59–69, 1982.

[4] Christopher JL Murray and Julio Frenk. Ranking 37th—measuring the
performance of the us health care system. New England Journal of
Medicine, 362(2):98–99, 2010.

[5] Lawrence L Weed. Medical records, medical education, and patient care:
The problem-oriented record as a basic tool. Press of Case Western
Reserve University, 1970.

[6] Lawrence L Weed and Lincoln Weed. Medicine in denial. CreateSpace,
2011.

187

	Contents
	List of Figures
	List of Tables
	Draft versions
	In a nutshell
	Introduction
	Terminology
	Acknowledgements
	The basics
	The business model
	Large-scale business model
	Small-scale business model
	The stakeholders

	What are doctors made of?
	Theory of the healthy human
	Mechanisms of disease
	Clinical examinations
	Craftsmanship
	Diagnostic and therapeutic knowledge

	Encapsulation
	The History of medical records
	The absence of records
	Paper-based mementos

	How does the EHR fail to assist us?
	Compare to other knowledge areas
	What should I do?
	How should I do it?
	What did I forget?
	History in context

	Current systems
	The goal of the system
	Legacy EHR Example: Cosmic
	Knowledge support
	Original articles
	Review articles
	Textbooks
	Guidelines
	Continued Professional Education

	How is the record created?
	The input method
	The different results

	The information model

	A consistent design
	Necessary, but not sufficient
	Effective use
	Context sensitive
	One single system
	Under the user's control
	Derivation of issues
	Cover the full process

	The phases of the clinical process
	Clinical encounter
	Overview of patient history
	Clinical examination
	Creating referrals and orders
	Creating prescriptions
	Creating the note record
	Finding results
	Receiving results
	Reporting
	Reporting to national registries

	The full medical process
	The real requirements
	Awareness of issues
	Awareness of patient history
	Awareness of planning
	Awareness of outcomes
	Ensure action
	Issue-based management
	Recording of history
	Recording of clinical examinations
	Don't lead me up the garden path
	Confidentiality

	How active should the software be?
	The keyhole effect
	The indiscriminate criteria effect
	The disempowerment effect
	Nurse vs doctor domain expert

	The issue oriented record
	Diabetes, old style
	Diabetes, new style
	The template structure
	The data pool

	Matching findings to templates
	The initial findings
	Combinatorial matching

	Document tree
	The attention list
	Encryption

	Transitioning and deployment
	Phase 1, guidelines
	Phase 2, combinatorial matching
	Phase 3, analysis and feedback

	Appendices
	App. A: Document-tree design
	App. B: About the author
	Bibliography

