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Cover image: Eight digital straight line segments illustrating the equiv-
alence relation based on the run length on all digitization levels (as de-
fined in Paper IV), restricted to the first four levels. The eight possible
forms of S4 with the length specification (1, 2, 2, 3) are presented. The 0’s
and 1’s on the leftmost digital straight line segment give an understand-
ing of the relationship between digital lines and the corresponding upper
mechanical words (chain codes).
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1. Introduction

This thesis is based on a number of different domains of mathematics.
The two main domains are digital geometry and combinatorics on words.
The problems we treat in this thesis appear also in symbolic dynamics,
crystallography, and astronomy. This interdisciplinary character can be
both very frustrating and very rewarding. The usual reason for frustration
is that you can be surprised that the problem you are working on has
already been solved in another domain than your own. You must check a
large number of disciplines of natural science to ascertain that your work
is original. The rewarding aspect is the fact that once you have managed
to formulate and solve a really interesting problem, it can be applied
in many different ways, which gives an enormous sense of satisfaction.
In this introduction we would like to sketch the problem, present the
different terms associated with it, and describe the circumstances in which
it appears.

Before we present the tools we have used in this thesis and the domains
we were working in, we will introduce some terms related to the problem
of interest, i.e., to descriptions of the sequence (�na�)n∈N for a positive
irrational a less than 1. These are:
1. the β-sequence defined by a (Bernoulli, Markov, Venkov)

β(n) = �(n + 1)a� − �na�;

see Nillsen et al. (1999) [66],
2. the Beatty sequence associated with a: Ba = (�an�)n∈N+ ; see Beatty

(1926) [6], de Bruĳn (1989) [25], Komatsu (1995) [57],
3. the characteristic word, the upper (lower) mechanical word with slope

a; see Definition 6 and formula (1.8) in this thesis,
4. rotation on a circle (Sturmian trajectory defined by a); see Arnoux et

al. (1999) [3] and Definition 8 in this thesis,
5. Freeman chain code of the line y = ax; see Freeman (1970) [38], and

Figure 1.5 and formula (1.6) in this thesis,
6. the cutting sequence of the line y = ax; see Figure 1.5 in this thesis,
7. the billiard word with slope a; see Borel and Reutenauer (2005) [15]

and the brief description in Section 1.3.1 of this thesis.
Other terms connected with our problem are: Rauzy rules, standard se-
quences, balanced words, words with minimal complexity, and Christoffel
words.

9
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Figure 1.1: The main domains and terms related to our problem.

In Section 1.1 we will give a brief introduction to the number-
theoretical tools which we will use in this thesis. In Figure 1.1 we present
the main domains and terms related to our problem of describing the
sequence (�na�)n∈N for a ∈ ]0, 1[ \Q. In Sections 1.2 and 1.3 we will try
to link the above mentioned terms to each other.

Examples of other places in the literature where the interdisciplinary
character of our problem is illuminated are Stolarsky (1976) [80], Bruck-
stein (1991) [24], Lothaire (2002) [60, pp. 45–60], Pytheas Fogg (2002)
[69, pp. 143–198], Berthé et al. (2005) [12], Berthé (2009) [11], and Harris
and Reingold (2004) [44].
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1.1 Our number-theoretical tools
1.1.1 A brief introduction to continued fractions (CF)
The history of the use of continued fractions (CF) is as long as the his-
tory of the use of Euclid’s algorithm (ca 300 BC), because the process
of finding the greatest common divisor for two natural positive numbers
n and k is the same process as calculating the CF-expansion of n

k . A
list of important dates and names in the history of CFs can be found
in Wikipedia (http://en.wikipedia.org/wiki/Continued_fraction). Here
we will only mention Aryabhatta (499), Rafael Bombelli (1579), Pietro
Cataldi (1613)—first notation for CFs, John Wallis (1695)—introduction
of the term continued fraction, Leonard Euler, Johann Lambert, Joseph
Louis Lagrange, Karl Friedrich Gauss, and Bill Gosper (1972) [42]—first
exact algorithms for CF-arithmetic. For more historical information see
Brezinski (1991) [18], Flajolet et al. (2000) [36], and Vardi (1998) [86].

To illustrate the first statement of this section with an example, we
will run Euclid’s algorithm for the numbers 17 and 31:
31 = 1 · 17 + 14
17 = 1 · 14 + 3
14 = 4 · 3 + 2
3 = 1 · 2 + 1
2 = 2 · 1

and compare it with the following:
17
31

=
1
31
17

=
1

1 + 14
17

=
1

1 +
1
17
14

=
1

1 +
1

1 + 3
14

=
1

1 +
1

1 +
1
14
3

=
1

1 +
1

1 +
1

4 + 2
3

=
1

1 +
1

1 +
1

4 +
1
3
2

=
1

1 +
1

1 +
1

4 +
1

1 +
1
2

.

We notice the numbers 1, 1, 4, 1, 2 (in boldface in both calculations),
which are the integer parts of the quotients in the performed divisions,
appear in both operations.

After this first example we will formally define a CF-expansion of a
number. We will do this for irrational numbers, because they are at the
absolute center of our attention in this thesis. The algorithm for rational
numbers is the same as for irrational numbers, but with the difference
that it ends after a certain number of steps.

11



Let a be an irrational number. The following algorithm gives the regular
(or simple) continued fraction (CF) for a:

a0 +
1

a1 +
1

a2 +
1

a3 +
1
· · ·

= [a0; a1, a2, a3, . . .].

We define a sequence of integers (an) and a sequence of real numbers
(αn) by

α0 = a; an = �αn� and αn+1 =
1

αn − an
for n ≥ 0.

Then an ≥ 1 and αn > 1 for n ≥ 1. The natural numbers a0, a1, a2, a3, . . .
are called the elements of the CF. They are also called the terms of the
CF, see Beskin (1986) [13, p. 20]; or partial quotients, see Venkov (1970)
[87, p. 40]. We will use the word elements, following Khinchin (1997) [49,
p. 1].

If a is irrational, so is each αn, and the sequences (an) and (αn) are
infinite. In case of a rational a, we get αm = am for some m and then we
cannot proceed and the algorithm stops, am is the last CF-element of a.

We notice that

αn+1 = [an+1; an+2, . . .] and
1

αn+1
= [0; an+1, an+2, . . .] = αn − an,

which is an example of an easy calculation of the inverse of a CF. Another
is subtracting a CF from 1, which is presented as Lemma 5 and Lemma 6
in Paper II.

A CF-expansion exists for all a ∈ R (we have just presented an algo-
rithm) and is unique if we impose the additional condition (for rational
slopes) that the last element cannot be 1, because

1
n

=
1

n − 1 + 1
1

,

so allowing 1 as the last element would destroy the uniqeness of the
expansion. In our work, however, we even need not bother about the
last elements, because we are dealing with irrational numbers, and these
always have a CF-expansion with an infinite numbers of elements. For
more details see Khinchin (1997) [49, p. 16].

We call [a0; a1, a2, . . . , an], for each n ∈ N, the nth convergent of the
CF [a0; a1, a2, . . .]. If we define

p0 = a0, p1 = a1a0 + 1, and pn = anpn−1 + pn−2 for n ≥ 2

12



and
q0 = 1, q1 = a1, and qn = anqn−1 + qn−2 for n ≥ 2,

then
[a0; a1, a2, . . . , an] =

pn

qn
for n ∈ N;

see for example Vajda (2008) [84, pp. 158–159]. All convergents are ir-
reducible. Even-order convergents form an increasing sequence and odd-
order convergents a decreasing. Every odd-order convergent is greater
than any even-order convergent; see Khinchin (1997) [49, p. 6, Th. 4].

CFs form a very important tool in the approximation of irrational num-
bers. The following justification of this statement comes from Khinchin
(1997) [49, pp. 21–22]. A rational fraction m/n (for n > 0) is called a
best approximation of a real number a if every other rational fraction s/t
with the same or smaller denominator differs from a by the same or a
greater amount, thus:

0 < t ≤ n ⇒
∣∣∣∣a − s

t

∣∣∣∣ ≥
∣∣∣∣a − m

n

∣∣∣∣ .
For each a = [a0; a1, a2, . . .], for each k ≥ 2 and 1 ≤ j ≤ ak − 1, the
fractions

pk−2 + jpk−1

qk−2 + jqk−1

we call intermediate fractions. The following theorem [49, p. 22, Theo-
rem 15] shows the importance of CF-expansion in the approximation of
irrational numbers.

Theorem 1 Every best approximation of a number a ∈ R \ Q is a con-
vergent or an intermediate fraction of the CF expressing that number.

If we know the CF-expansion of a real number, we can determine the
value of that number with an a priori chosen degree of accuracy. More
about approximations can be found in Khinchin (1997) [49, pp. 16–50].

In Paper II of this thesis we give some examples of irrational numbers
with very simple CF-expansions. We recall the theorem (Lagrange 1770,
Euler 1737) which states that

quadratic surds, and only they, are represented by periodic CFs;

see Beskin (1986) [13, pp. 66–71]. We also show some transcendental
numbers with a periodical pattern in the CF-expansion.

For more information about CFs, see Khinchin (1997) [49], Flajolet et
al. (2000) [36], and, for CF-arithmetic, Gosper (1972) [42].
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CFs have a beautiful geometrical interpretation, which was formulated
by Felix Klein in 1895 and explored by Vladimir Igorevich Arnold. Before
we formulate the theorem by Klein, we will cite Korkina (1996) [58].

In geometric representation, continued fractions are associated with the
boundaries of the convex hull of all integer points in some angles in the
plane. The coefficients of a continued fraction are equal to the integer
lengths of segments belonging to the boundaries of convex hulls.

In Debled (1995) [30, p. 63] we find the following formulation of Klein’s
theorem.

Theorem 2 (Klein 1895; the formulation from [30, p. 63]) Let a be an
irrational number with the CF-expansion a = [a0; a1, a2, . . .] and let us
denote its convergents by pn/qn = [a0; a1, a2, . . . , an] for n ∈ N. We have
the following:
• the integer points on the boundary of the convex hull of all integer
points lying under the line y = ax are

(q0, p0) = (1, a0), (q2, p2), . . . , (q2k, p2k), . . . ,

• the integer points on the boundary of the convex hull of all integer
points lying over the line y = ax are

(q3, p3), (q5, p5), . . . , (q2k+1, p2k+1), . . . .

In our work we use CFs to describe digital straight lines in the plane
(see Section 1.2). In order to describe lines (and planes) in higher di-
mensions, one can use multidimensional CFs, as in the Ph.D. thesis of
Thomas Fernique from 2007 [35].

1.1.2 The Gauss map
In both Euclid’s algorithm and the process of finding the CF-expansion
of a number, the integer and fractional part of numbers are very much
involved. Each positive irrational a less than 1 can be represented in the
following way:

1
1
a

=
1⌊

1
a

⌋
+ frac

(
1
a

) =
1⌊

1
a

⌋
+

1⎢⎢⎢⎣ 1

frac
(

1
a

)
⎥⎥⎥⎦ + frac

⎛
⎝ 1

frac
(

1
a

)
⎞
⎠

(1.1)

which could be continued in the same way as the process of finding the
CF-expansion of 17

31 presented in Section 1.1.1 of this introduction. It
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would, however, become quite monstrous and would lose its readability
very quickly (if it has not lost it already). To make the notation more
elegant, one can use the Gauss map, which leads to a more compact
notation of (1.1). Let us recall that the Gauss map G: [0, 1] → [0, 1] is
defined as follows:

G(x) =

⎧⎨
⎩ 0, if x = 0

frac
(

1
x

)
if 0 < x ≤ 1.

For a = [0; a1, a2, . . .] we have obviously

Gn(a) = [0; an+1, an+2, . . .] for n ∈ N+, (1.2)

where G1(a) = G(a) and Gk+1(a) = G(Gk(a)) for k ∈ N+. This means
that

a =
[
0;

⌊
1
a

⌋
,

⌊
1

G(a)

⌋
,

⌊
1

G2(a)

⌋
, . . .

]
, (1.3)

which expresses the same idea as (1.1), but in a much nicer way. One can
read more about the relationships between CFs and the Gauss map in
Bates et al. (2005) [5]. In Paper II of this thesis we discuss the relationship
between the Gauss map and the process of digitization of straight lines
with positive irrational slopes less than 1.

1.1.3 The Stern–Brocot tree
Another important number-theoretical tool, which is strongly related to
CFs, is the Stern–Brocot tree; see Figure 1.2. This section is heavily based
on Graham, Knuth and Patashnik (2006) [43, pp. 116–123].

The Stern–Brocot tree was discovered independently by the German
mathematician Moritz Stern in 1858 and by the French clockmaker
Achille Brocot three years later, in 1861. It is constructed as follows; cf.
Graham et al. (2006) [43, pp. 116–117]:
We start with two fractions, 0

1 and 1
0 , where the latter is meant formally

as a pair (1, 0) symbolizing the infinity, and gives us a possibility of a
homogeneous definition of all nodes.

The dashed lines between 0
1 and 1

1 and between 1
1 and the empty place 1

for 1
0 (which represents infinity) symbolize that 0

1 lies to the left of all
nodes of the tree and 1

0 lies to the right of all nodes of the tree as they

1When I was drawing Figure 1.2 I felt very bad about putting 1
0

in it (it is probably
caused by some childhood trauma related to division by zero). Then I changed my
mind and used this formally meant fraction anyway and then... my computer crashed
when I tried to export this new picture to .eps format. It felt like a supernatural
confirmation of my initial doubts, so I decided to leave the place for 1

0
in Figure 1.2

empty.
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are respectively the smallest and the largest (the latter is, again, meant
symbolically) numbers used as labels for nodes. The node labeled by m

n

is a descendant of the node k
l (and k

l is then called an ancestor of m
n ) if

there is a path leading upwards from m
n to k

l .
In order to construct the Stern–Brocot tree, we repeat the following

operation as many times as needed:

Insert m+m′
n+n′ between two adjacent fractions m

n and m′
n′ .

This way we get, after starting with 0
1 and 1

0 , one more fraction in the
first step and continue with three fractions, 0

1 , 1
1 , and 1

0 , which includes
two pairs of consecutive fractions. This means that we can produce two
new fractions in the next step and get 0

1 , 1
2 , 1

1 , 2
1 , and 1

0 , which contains
four pairs of consecutive fractions, giving four more fractions in the next
step, etc. Each fraction in the Stern–Brocot tree, except the first two, is
of the form m+m′

n+n′ , where m
n is the nearest ancestor above and to the left,

and m′
n′ is the nearest ancestor above and to the right.

The result is shown in Figure 1.2. By putting the dashed lines going
down towards 1

1 from the left and from the right we try to justify the
usage of the word between in the definition of the nodes of the Stern–
Brocot tree. All the nodes in Figure 1.2 are placed in such a way that
each node lies between the two ancestors it arises from. However, it is
clear that it is physically impossible to continue drawing in this way and
preserve some readability, so we restrict our picture in Figure 1.2 to the
top of the Stern–Brocot tree.

The left-hand side of the Stern–Brocot tree is also called the Farey
tree; see Lagarias (1992) [59, p. 42]. The Stern–Brocot tree has a number
of interesting properties, which can be found in Graham et al. (2006)
[43, pp. 116–120]. For example, all the fractions appearing in it are in
lowest terms. Each positive fraction m

n where m and n are relatively
prime, appears in the tree exactly once and none of them is omitted. The
construction of the tree preserves the order < in Q.

Let us denote traversing down the left or right branch by L and R
respectively. Beginning from 1

1 and following the path to a particular
fraction, we get a unique coding by string of L’s and R’s for this fraction.
The 1

1 -fraction itself is represented by the empty string called I (identity).
For example, RLRL represents 8

5 . The first element of the string is the
letter which codes our first move downwards from 1

1 in the direction of
the fraction we want to reach.

For each string S of L’s and R’s, let us denote by f(S) the fraction
corresponding to the route coded by S in the Stern–Brocot tree. We have
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Figure 1.2: The top of the Stern–Brocot tree.

for each a0 ∈ N, a1, . . . , an−2 ∈ N+, an−1 ≥ 0, and an even n

f(Ra0La1Ra2 · · ·Lan−1) = a0 +
1

a1 +
1

a2 +
1

. . . +
1

an−1 +
1
1

; (1.4)

see Graham et al. (2006) [43, pp. 301–307]. This can also be used for
infinite CFs, thus for irrational numbers. We have for example

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, . . .]

e = R2LR2LRL4RLR6LRL8RLR10LRL12RL · · · .

The formula for the CF-expansion of e comes from Euler (1737), but,
according to Brezinski (1991) [18, p. 97], it was already formulated by
R. Cotes in the Philosophical Transactions in 1714. The L-R-string for e
can be found in Graham et al. (2006) [43, p. 122].

Both CFs and the Stern–Brocot tree have been intensively used in
connection with descriptions of digital straight lines. Isabelle Debled, in
her Ph.D. thesis from 1995 [30], used (1.4) to find the convergents of the
rational slopes of the lines to be digitized. She also used Klein’s theorem
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(Theorem 2 in this thesis). This resulted in an algorithm for digital lines
with rational slopes; see Debled (1995) [30, p. 65].

1.2 Digital geometry
Digital geometry is a very young branch of mathematics; it is only about
50 years old and arose out of the need for making computer graphics. Fol-
lowing Kiselman (2008) [53], we can call it the geometry of the computer
screen. In the abstract of McIlroy (1992) [62] we find the following state-
ment: Computer graphics is geometry on a grid, with further explanation
as follows:

Computers make drawings by coloring pixels in a bitmap, which may be
thought of as the points of a plane integer lattice. People made digital
pictures for thousands years before computers and well before number
theory, too [McIlroy refers to a discretized image from Chicama Valley,
Peru, ca 2000 BC, which is now in the American Museum of Natu-
ral History]. But with computers, where algorithm supplants artistry,
the mathematics becomes more important. Drawing a figure becomes a
problem in two-dimensional Diophantine approximation: picking points
of the lattice to get a good fit.

Digital geometry is of course much more than finding a good integer-
number approximation of R2-sets. It is also about how to express move-
ments with integer numbers only, how to define digital convexity, con-
nectivity, and other well-known properties and objects from euclidic ge-
ometry. To learn more about it, one can read Klette’s and Rosenfeld’s
textbook on digital geometry from 2004 [54] or the proceedings of the
DGCI conferences (Discrete Geometry for Computer Imagery).

Another excellent source of information about digital geometry and its
topics, this time in Swedish and written for everybody who is interested in
mathematics, not only for specialists in digital geometry, is the chapter
about the geometry of computer screen by Christer Kiselman [53] in
a popular-science book about selected topics in mathematics. A much
more advanced source of material is the lecture notes (in English) in
digital geometry and mathematical morphology by the same author; see
Kiselman (2004) [52]. Debled-Rennesson (2007) [31] provides deep insight
into very recent developments in numerous subjects of digital geometry,
both from a theoretical standpoint and with a strong focus on applications
(many algorithms are presented).

In the Ph.D. thesis of Erik Melin from 2008 [64], the focus is on the
Khalimsky topology and digital continuous functions. Convex functions
on discrete sets are studied by Kiselman (2004) [51]. A lot of work on the
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topic of discrete rotations has been done by Nouvel and Rémila; see [67]
and references there. In [50], Christer Kiselman formulates and proves
a discrete version of the Jordan curve theorem. A very important part
of digital geometry is the development of theoretical mathematical tools
for image processing, like for example distance functions; see Borgefors
(2003) [16], Strand (2008) [81]. There exists also an enormous number of
publications concerning 3D discrete geometry. Digital planes and 3D-lines
have been examined in [29, 30, 89, 19, 46, 1, 47, 35, 2] and elsewhere.

In this introduction to digital geometry we will focus on the digitization
process in 2D and descriptions of digital straight lines, because this part
of digital geometry is essential for our results.

1.2.1 Digital lines
To digitize a subset of R2 means to find its representation in Z2, i.e., to
approximate it with a set of integer-coordinate points. There are different
ways to do so, but in all of them the main aim is the same: to select pixels
that are close to the R2-set they approximate.

The first attempts to do that were algorithmic. The most well-known
algorithm for plotting lines on a grid is due to Bresenham (1965) [17].
This has become an excellent tool in computer graphics, but it does not
give a description of digital lines as mathematical objects.

Freeman (1974) [39] gave a more mathematical description of how one
can make a choice of pixels for approximation of a continuous curve with
integer-coordinate points. The Freeman approximation of a curve is the
set of points (k, n) ∈ Z2 for which the curve intersects either of the closed
unit segments, horizontal H(k, n) and vertical V (k, n) centered on (k, n),
where

H(k, n) = {(x, n); k − 0.5 ≤ x ≤ k + 0.5},

V (k, n) = {(k, y); n − 0.5 ≤ y ≤ n + 0.5}.

The Freeman approximation chooses, for each intersection of the curve
with a grid line of the lattice, the point nearest to the intersection. Fig-
ure 1.3 shows Freeman points (the integer-coordinate points approximat-
ing the curve) as dots, the segments H(k, n) and V (k, n) as bars, and
the pixels centered in Freeman points as shadowed squares; cf. McIlroy
(1992) [62, pp. 106–108].

The Freeman approximation is invariant under symmetry operations
of the integer lattice: integer translations, half turns, quarter turns, and
reflections, but it also has some drawbacks. In some cases it can give thick
digitizations, for example when a curve passes exactly halfway between
two adjacent lattice points; see the pixels number 1 and 2 and the pixels
number 3 and 4 in Figure 1.3.
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Figure 1.3: Freeman approximation of a curve. The explanation for the shaded
squares follows in the text.
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Figure 1.4: Rosenfeld R-cross and the modified Rosenfeld R′-cross.

Another way to do integer-point approximations is the classical digiti-
zation defined by Azriel Rosenfeld in 1974 [72]. In this thesis we call it
the R-digitization. We remove the point (k − 0.5, n) from H(k, n) and
the point (k, n − 0.5) from V (k, n) and in this way we get the following
R-crosses centered in (k, n) for each (k, n) ∈ Z2 (see also Figure 1.4):

CR(k, n) = ({k} × ]n − 0.5, n + 0.5]) ∪ (]k − 0.5, k + 0.5] × {n}) .

The R′-crosses illustrated in Figure 1.4 and the R′-digitization will be
discussed later in this section (on page 23).

Rosenfeld’s digitization of a subset A of R2, which we will denote by
DR(A), is the set of all (k, n) in Z2 for which the intersection of A and
CR(k, n) is not empty:

DR(A) = {(k, n) ∈ Z2; A ∩ CR(k, n) �= ∅}.
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We can see that this way of representing R2-sets by grid points allows
us to reduce thick digitizations in some cases. For example, in Figure 1.3
we get rid of the pixel number 4. However, the solution is not perfect.
We can eliminate none of the pixels numbered 1, 2 and 3, and we do not
handle the pixels numbered 5 and 6 correctly either; the discrete curve
contains a loop while the continuous curve is simple (injective).

If the subset A to digitize is a straight line y = ax with a ∈ ]0, 1[ \ Q,
then the R-digitization can be described arithmetically as follows:

DR(A) = {(k, �ak + 0.5�); k ∈ Z}. (1.5)

The resulting lines can be very thick for rational slopes, like for example
y = x + 0.5, but there is a solution for this—we choose the upper or the
lower half of the digitization. We can form the sequence of differences of
the consecutive n-values (the discrete counterpart of y-values) of DR(A)
in the following way:

ca(k) = �a(k + 1) + 0.5� − �ak + 0.5�, (1.6)

which forms the chain code of the line y = ax. In this way we code the
move upwards (in the grid) with 1 and a horizontal move with 0; see
Figure 1.5. Actually, chain codes of a digital straight line were discussed
even before the definition of R-digitization was formulated. They were
described in Freeman (1970) [38], where we can find necessary conditions
(F1)–(F3) for self-similarity of digital straight lines:

To summarize, we thus have the following three specific properties which
all chains of straight lines must possess:

(F1) at most two types of elements can be present, and these can differ
only by unity, modulo eight;

(F2) one of the two element values always occurs singly;
(F3) successive occurrences of the element occurring singly are as uniformly

spaced as possible.

The chain codes of lines with rational slopes are periodic, in case of
irrational slopes we get aperiodicity; see Klette and Rosenfeld (2004a)
[54, p. 312, Th. 9.3]. One can also define a digital ray with slope a, which
is ca(0)ca(1)ca(2) · · ·; see Klette and Rosenfeld (2004a) [54, p. 310].

In Figure 1.5 we also illustrate the cutting sequence of a straight line
y = ax for a ∈ ]0, 1[ \ Q (call it l). Cutting sequences were described by
Caroline Series in 1985 [74]. We consider the intersections of the line l
with the grid lines passing through integer-coordinate points. We create
the following sequence of labels: use V if the grid line crossed by the line
l is vertical and H if it is horizontal. The sequence of labels, read from
origin out, is called the cutting sequence of l. The relationship between
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V’s and H’s) of a straight line.
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Figure 1.6: The chord property.

cutting sequences and characteristic words is examined in Crisp et al.
(1993) [28] and is illustrated in Figure 1.5.

In 1974, Azriel Rosenfeld introduced the following definition.

Definition 1 A set M of grid points satisfies the chord property iff, for
any two distinct p and q in M and any point r on the (real) line segment
pq, there exists a grid point t ∈ M such that the l∞-distance between r
and t is less than 1, i.e., max(|r1 − t1|, |r2 − t2|) < 1.

The chord property is illustrated in Figure 1.6.
This definition and the theorem which says that digital straightness and

chord property are equivalent [54, pp. 316–317, Th. 9.7], allowed Rosen-
feld to formulate the following necessary conditions on the chain codes
of digital straight line segments; see Rosenfeld (1974) [72]. These condi-
tions had already been (partly) presented by Freeman in 1970, but they
were not precisely formulated—(F3) is quite informal—and not proven.
There is an intimate connection between them and the self-similarity
of digital lines discussed in Bruckstein (1991) [24]. The conditions pre-
sented by Rosenfeld are stated in terms of the runs in the chain code.
By run we mean a maximum-length factor an or bn of chain codes (thus
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Figure 1.7: Subsets of R2 and their R′-digitization; three examples.

a, b ∈ {0, 1, 2, . . . , 7}). The concept of run is absolutely essential for this
thesis. Rosenfeld’s conditions (R1)–(R4) are the following.

(R1) The runs have at most two directions, differing by 45◦ [see Figure 1.5;
for slopes between 0 and 1 we get symbols 0 and 1, we can thus take
a = 0 and b = 1], and for one of these directions the run length must
be 1.

(R2) The runs can have only two lengths, which are consecutive integers.
(R3) One of the runs can occur only one at a time.
(R4) ..., for the run length that occurs in runs, these runs can themselves

have only two lengths, which are consecutive integers, and so on.

In our work, we modified the R-digitization by introducing R′-crosses,
which are R-crosses translated by (0,−0.5) as in Figure 1.4. In Fig-
ure 1.7 we can see an example of three subsets of R2, a disc, a surface
inside a closed curve, and a straight line segment, together with their
R′-digitizations which are represented by the shadowed squares. The bul-
lets on the grid symbolize integer-coordinate points, which form a digital
representation of the R2-sets.

The R′-digitization of the line y = ax is the following:

DR′({(x, y) ∈ R2; y = ax}) = {(k, ak�); k ∈ Z}. (1.7)

We notice that the modification of Rosenfeld’s definition lets us eliminate
the +0.5 term from the formula (1.5).

Jean-Pierre Reveillès gave in his Ph.D. thesis [71] in 1991 a definition of
the arithmetic discrete line, which is very widely used. He defined digital
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Figure 1.8: Top: a naive line (8-connected), bottom: a standard line (4-
connected).

lines by pairs of linear Diophantine (involving only integers) inequalities.

Definition 2 Let a, b, μ and ω be integers such that a and b are relatively
prime and ω > 0. Then

Da,b,μ,ω = {(i, j) ∈ Z2; μ ≤ ai + bj < μ + ω}

is called an arithmetic line with the normal vector (a, b), the translation
parameter (or the inferior bound) μ, and the arithmetic thickness ω.
If ω = ‖(a, b)‖∞ = max(|a|, |b|), then Da,b,μ,ω is called naive, and if
ω = ‖(a, b)‖1 = |a| + |b|, then Da,b,μ,ω is called standard.

In Figure 1.8 we show examples of a naive line and a standard line.
Naive lines are 8-connected which means that each grid point belonging
to a naive line has a horizontal, vertical or diagonal neighbor which also
belongs to the same line. Standard lines are 4-connected (the same con-
dition, but with the restriction that the neighbors must be horizontal or
vertical). In Debled (1995) [30, pp. 70–71] one can find more pictures and
a deeper discussion of different kinds of connectivity.

1.2.2 CF-based descriptions of digital lines
In this thesis we will present a new CF-description of digital lines. The
use of CFs in modelling digital lines was discussed by Brons [22] as early
as 1974. The algorithm provided by Brons is only valid for rational slopes.

In 1982, Wu formulated a theorem describing digital straightness by
a set of conditions (called the DSS property) which the corresponding
chain code must fulfill; see Klette and Rosenfeld (2004b) [55, pp. 208–
209, Th. 14]. Proofs of this theorem based on CFs were published in 1991
independently by Bruckstein and Voss. Bruckstein (1991) [24] described
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digital straightness by a number of transformations preserving it. Some
of these transformations were defined by means of CFs.

Dorst and Duin (1984) [32] presented an algorithm for drawing digital
straight lines, which is also valid for irrational slopes. Pitteway (1985)
[68] described the relationship between Euclid’s algorithm (which is, as
we already mentioned, equivalent with the process of finding the CF-
expansion when dealing with rational numbers) and run-length encoding.

Voss (1993) [90, pp. 153–157] described a method of constructing the
digitization of straight lines with rational slopes using the so called split-
ting formula to split slopes into elementary slopes 1

k , where k ∈ N+\{1}.
The splitting formula is recursive. The idea of the formula is based on
the characteristic triangles determined by CFs.

Troesch (1993) [82] discussed the relationship between Euclid’s algo-
rithm and digitization runs.

Debled presented in her Ph.D. thesis from 1995 a CF-based description
of digital lines. As we already mentioned, she used the Stern–Brocot tree
(defined in Section 1.1.1) and Klein’s theorem (Theorem 2 on p. 14 in this
thesis); see [30, pp. 59–66]. Reveillès (1991) [71, p. 157] formulated a CF-
based condition to describe intersections of digital naive lines. Sivignon
et al. (2004) [76] used the results by Debled and by Reveillès, named
above, for investigating the character of digital intersections (e.g., their
connectivity and periodicity).

The solution to the problem of describing runs given by Stephenson in
his Ph.D. thesis from 1998 [77] was formulated as an algorithm. The run-
hierarchical structure of digital lines with rational slopes is also described
in Stephenson and Litow (2000, 2001) [78, 79].

De Vieilleville and Lachaud published their combinatoric approach to
digital lines in 2006; see [88].

In the text above we listed only the researchers which described digital
straight lines through CFs. There are, of course, lots of authors examining
the problem with tools other than CFs, which are less relevant to the
subject of this thesis. Melin (2005) [63] defined a continuous digitization
of straight lines in the Khalimsky plane, Samieinia (2007) [73] further
elaborated this subject.

For more information about digital straightness see the review by
Klette and Rosenfeld from 2004 [55].

1.3 Combinatorics on words
This part of the introduction is heavily based on Lothaire (2002) [60],
Pytheas Fogg (2002) [69], Karhumäki (2004) [48], Berstel and Perrin
(2007) [10], and the Ph.D. thesis of Amy Glen from 2006 [41].
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Combinatorics on words is a relatively new domain of discrete math-
ematics. It has grown enormously in last few decades, because of its
numerous applications in
• mathematics (symbolic dynamics, digital geometry),
• computer science (pattern recognition, digital straightness, algorithmic

number theory),
• physics (quasicrystal modelling); see Duneau and Katz (1985) [33], and

de Bruĳn (1990) [26] and the references there,
• biology (molecular biology); see for example Van Vliet, Hoogeboom

and Rozenberg (2006) [85].
In de Bruĳn (1990) [26] one can find the discussion of relationships be-
tween quasicrystals, Penrose tilings, and Beatty sequences; see also La-
garias (1992) [59, pp. 59–66].

According to Karhumäki (2004) [48], the 1906 paper by Axel Thue
(1863–1922) on repetition-free words is considered a starting point of
mathematical research on words. In Berstel and Perrin (2007) [10] we
read that the concept of repetitions is nowadays familiar to biologists
under the name of tandem repeats. They occur in DNA when a pattern
of two or more nucleotides is repeated and the repetitions are directly
adjacent to each other. An example can be ATTCGATTCGATTCG in
which the sequence ATTCG appears in a multiple.

The modern systematic research on words, in particular words as el-
ements of free monoids, was initiated by M. P. Schützenberger in the
sixties.

The main object in combinatorics on words is a word, i.e., a (finite or
infinite) sequence of symbols from a finite set A called the alphabet. We
denote by A� the set of all finite words over A (i.e., finite sequences of
elements from A). The set A� is a free monoid (non-empty set equipped
with an associative binary operation and an identity element) under the
operation of concatenation. The concatenation of two finite words u and
v, written uv, is obtained by juxtaposing their letters. This operation is
clearly not commutative, for example, if A = {0, 1}, u = 10 and v = 01
then uv = 1001 and vu = 0110, so uv �= vu. The identity ε of A� is the
empty word. The free semigroup over A is defined by A+ := A�\{ε}. The
length |u| of a word u ∈ A� is the total number of letters forming it. As
an example of finite words we can give actual DNA molecules. These are
words over the four-letter alphabet N = {A,C, G,T}, where the name
of the alphabet N symbolizes the word nucleotides, while A, C, G, and
T stand for Adenine, Cytosine, Guanine, and Thymine respectively; see
Van Vliet, Hoogeboom and Rozenberg (2006) [85].

We denote by Aω the set of (right) infinite words (i.e., sequences of
symbols in A indexed by non-negative integers) and we also use the no-
tation A∞ = A� ∪ Aω. The three most common ways of presenting an
infinite word are as follows:
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• an infinite word x can be given by a map x:N → A; we define xi = x(i)
for any i ≥ 0 (thus each xi is a letter from A) and write x = x0x1x2 · · ·,

• an infinite word w can be formed by concatenating infinitely many
finite words Ci and we denote w = C1C2 · · ·, or

w =
∞∏

j=1

Cj

(as in Theorem 4 in Paper III),
• an infinite word w can be defined as the limit of an infinite sequence

of finite words P1, P2, P3, . . . such that Pi is a proper prefix of Pi+1 for
each i ≥ 1, i.e., w = limn→∞ Pn is the unique infinite word having the
words P1, P2, . . . as prefixes; we have such a situation in Theorem 3 in
Paper III.
A finite word w is a factor of a (finite or infinite) word x if a word y

and a finite word u exists such that x = uwy. The set of factors of x is
denoted by F (x) and the set of factors of length n is denoted by Fn(x).

Definition 3 [60, p. 7] The complexity function of a finite or infinite
word x over some alphabet A is the function that counts, for each integer
n ≥ 0, the number P (x, n) of different factors of length n in x:

P (x, n) = card(Fn(x)),

i.e., for each x ∈ A∞, its complexity function is P (x, ·):N → N, where
for each n ∈ N the value P (x, n) is the number of different factors of
length n in x.

Clearly, for each word x we have P (x, 0) = 1, because F0(x) = {ε}, and
P (x, 1) is the number of letters appearing in x. If x is right infinite, every
factor can be extended to the right, so we have for each n ∈ N

P (x, n) ≤ P (x, n + 1).

If x ∈ A�, then P (x, n) = 0 for n > |x|.
The research in combinatorics on words has, as mentioned above, nu-

merous applications in computer science, biology (genes), crystallography
etc. A very good source of information about current research—examining
palindromes, overlap-free words, repetitions in words, avoidable patterns,
episturmian words, and other topics—is the Ph.D. thesis of Amy Glen
from 2006 [41] and the recent survey by Jean Berstel from 2007 [9].

1.3.1 Sturmian words
Infinite binary sequences called Sturmian words are a very intensely re-
searched kind of words. They have been studied by many researchers
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from combinatorial, algebraic, and geometric points of view; see Lothaire
(2002) [60], Pytheas Fogg (2002) [69], Berthé et al. (2005) [12].

In Pytheas Fogg (2002) [69, p. 142], in chapter Sturmian Sequences by
P. Arnoux, we find the following:

In this chapter, we will study symbolic sequences generated by an ir-
rational rotation. Such sequences appear each time a dynamic system
has two rationally independent periods; this is a very typical situation,
arising for example in astronomy (with the rotation of the moon around
the earth, and of the earth around the sun), or in music (with the build-
ing of musical scales, related to the properties of log 3/ log 2), and such
sequences have been studied for a long time.

Some explanation for the examples above can be found in Barrow (2000)
[4].

The first detailed investigation of Sturmian words can be found in
Morse and Hedlund (1940) [65]. They introduced the term Sturmian,
named for the mathematician Charles François Sturm (1803–1855). The
reason was the following: Sturm is best remembered for the Sturm–
Liouville problem, an eigenvalue problem in second order differential
equations. When we examine the zeros of solutions of a homogeneous
second order differential equation

y′′ + φ(x)y = 0

where φ is a continuous function of period 1 and denote by kn the number
of zeros of a solution in the interval [n, n + 1[, then the infinite word
abk0abk1 · · · is either Sturmian (which we will define in a moment) or
eventually periodic (Definition 5 on p. 29 in this thesis); see Morse and
Hedlund (1940) [65, p. 1], and Berstel and Perrin (2007) [10, p. 1004].

The pioneering 1940 paper by Morse and Hedlund [65] contains many
properties of Sturmian words. Even though the majority of facts we will
present in this introduction comes from [65], we will cite more recent
sources to make the notation and the names of terms conform to those
from Lothaire (2002) [60].

There are many equivalent ways of defining Sturmian words. One of
them is (combinatorial) characterization by the number of factors (i.e.,
by the complexity function recalled in Definition 3 in this thesis); see
Coven and Hedlund (1973) [27].

Definition 4 A Sturmian word is an infinite word s such that

P (s, n) = n + 1

for any integer n ≥ 0.
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Taking in particular n = 1, we get from Definition 4, that P (x, 1) = 2
for any Sturmian word x, so any Sturmian word is a binary word, i.e., a
word over a two letter alphabet, because P (x, 1) is the number of letters
appearing in x. We can, without loss of generality, call our letters 0 and
1, thus A = {0, 1}.

Let us compare Definition 4 with the following definition and lemma
formulated for sequences of two symbols a and b in Morse and Hedlund
(1940) [65, p. 10]:

Condition A. A set of m-chains will be said to satisfy Condition
A if, n being any positive integer not exceeding m, the b-lengths of
the sub n-chains of the given set of m-chains assume at most two values.

Lemma 3.2. If a set of m-chains satisfies Condition A, the number of
chains in the set cannot exceed m + 1.

By an m-chain one should understand a sequence of letters a and b of the
form abk1abk2a · · · abkma, where ki for i = 1, 2, . . . ,m is a natural number
(not necessarily positive), while the b-length is the number of symbols b
in the m-chain, which is equal to k1 + k2 + · · · + km.

To be able to list some properties of Sturmian words, we first introduce
the following definition; the formulation is from Lothaire (2002) [60, p. 9]:

Definition 5 A word x ∈ Aω is
• periodic if it is of a form x = zω for some z ∈ A+,
• eventually periodic if it is of a form x = yzω for some y, z ∈ A+,
• aperiodic if it is not eventually periodic.

The following theorem, Lothaire (2002) [60, Th. 1.3.13], shows the rela-
tion between the periodicity and the complexity function of a word. Its
proof can be found in Lothaire (2002) [60, p. 19].

Theorem 3 Let x be an infinite word. The following are equivalent:
(1) x is eventually periodic,
(2) P (x, n) = P (x, n + 1) for some n ∈ N,
(3) P (x, n) < P (x, 1) + n − 1 for some n ∈ N+,
(4) {P (x, n); n ∈ N} is bounded.

This gives us the following proposition; cf. Lothaire (2002) [60, p. 46].

Proposition 1 Sturmian words are aperiodic infinite words of minimal
complexity, i.e., x is Sturmian iff it is such an aperiodic infinite word
that its complexity function P (x, ·):N → N is minimal.

In order to make the description of Sturmian words more explicit, we will
define characteristic, and upper and lower mechanical words. Mechanical
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Figure 1.9: An R′-digital line y = ax with irrational slope a = [0; a1, a2, . . .]
and corresponding upper mechanical word s′(a).

sequences were introduced in Morse and Hedlund (1940) [65, p. 13], but
the following formulation comes from Lothaire (2002) [60, p. 53].

Definition 6 For each a ∈ ]0, 1[ \ Q we define two binary words in the
following way: s(a):N → {0, 1} and s′(a):N → {0, 1} are such that for
each n ∈ N

sn(a) = �a(n + 1)� − �an� and s′n(a) = a(n + 1)� − an�.

The word s(a) is the lower mechanical word and s′(a) is the upper me-
chanical word with slope a and intercept 0.

We have s0(a) = �a� = 0 and s′0(a) = a� = 1 and, because x�−�x� = 1
for irrational x (we can thus use both �·� and ·� in our descriptions), we
have

s(a) = 0c(a) and s′(a) = 1c(a),

meaning 0, respectively 1, concatenated to c(a). The word c(a) is called
the characteristic word of a. For each a ∈ ]0, 1[\Q, the characteristic word
associated with a is thus the following infinite word c(a):N+ → {0, 1}:

cn(a) = �a(n + 1)� − �an� = a(n + 1)� − an�, n ∈ N+. (1.8)

It is clear that the problem of finding upper or lower mechanical or char-
acteristic words for any a ∈ ]0, 1[ \ Q is equivalent to the problem of
finding the Beatty (or β) sequence for this a.

When comparing Figure 1.5 with Figure 1.9, and (1.6) and (1.7) with
(1.8), one can easily see that the chain code of y = ax (according to the
R′-digitization) and the characteristic word c(a) is the same sequence.

Another geometrical interpretation of Sturmian words is the following.
We shoot a ball in a square billiards, with initial irrational slope a. The
ball bounces on the sides of the billiards according to the laws of elastic
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shock, and we write V when the ball touches a vertical side, and H for
a horizontal side. In this way we form a binary word over the alphabet
{H,V }. For given a we call such a word the billiard word with slope a.
We notice the equivalence between this word and the cutting sequence
for the line y = ax; see Borel and Reutenauer (2005) [15] and Figure 1.5
in Section 1.2.1 of this thesis.

Another description of Sturmian words is connected with the balance
property. The formulation of the following definition comes from Lothaire
(2002) [60, p. 48].

Definition 7 Let x, y be 0-1-words.
• The height of a finite word x is the number h(x) of letters 1 in x.
• Given two finite words x and y of the same length, their balance
δ(x, y) is the number

δ(x, y) = |h(x) − h(y)|.

• A set of finite words X is balanced if

x, y ∈ X ∧ |x| = |y| ⇒ δ(x, y) ≤ 1.

• A finite or infinite word is itself balanced if the set of its factors (thus,
finite words) is balanced.

In terms of digital geometry we can formulate the balance property in
the following way: for each two digital naive straight line segments with
the same slope a ∈ ]0, 1[ \Q and the same length (i.e., which contain the
same number of pixels), their height can differ at most by 1. Actually, we
will see in a moment (Theorem 4 on p. 32) that this formal property of
balance has the same meaning as the (R1)–(R4)-conditions formulated
by Rosenfeld in 1974 [72] and in Section 1.2.1 of this thesis.

The fact that Sturmian sequences are balanced was established in 1940
by Morse and Hedlund [65, p. 22, Th. 7.1]. The balance property described
in [65] bears the name of Condition S.

Condition S. Under Condition S the a-lengths (b-lengths) of two m-
blocks with the same m shall differ by at most one.

By an m-block one should understand a sequence c1c2 · · · cm of letters a
and b (i.e., ci ∈ {a, b} for i = 1, 2, . . . ,m), while a-length (b-length) is
the number of a’s (b’s) in this sequence. The a-length (or the b-length)
corresponds to the height h(x) from Definition 7.

In order to characterize Sturmian words by their complexity function,
Coven and Hedlund made use of the equivalence between balanced ape-
riodic and Sturmian words. In their 1973 paper [27] the balance property
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is called the Sturmian Block Condition. More about the balance property
can be found in Vuillon (2003) [91] and, about generalized balances, in
Fagnot and Vuillon (2000) [34].

The following theorem, Lothaire (2002) [60, p. 51], shows the connec-
tion between Definitions 4, 5, 6, and 7.

Theorem 4 Let s be an infinite word. The following are equivalent:
(1) s is Sturmian;
(2) s is balanced and aperiodic;
(3) s is irrational (lower or upper) mechanical.

Balanced periodic words are rational lower or upper mechanical words.
They are called Christoffel words and can be seen as the finite variant of
Sturmian words.

In Theorem 4 we observe that in (3) the slope is given explicitly (see
Definition 6), while in the first two characterizations of Sturmian words
the existence of the slope follows from the definitions of the balance prop-
erty in (2) and of Sturmian words by the complexity function in (1). Given
Sturmian word x = x1x2 · · · we can find its slope by analyzing the densi-
ties h(Xn)/n, where Xn = x1x2 · · ·xn is the prefix with length n and h
is the height-function from Definition 7. Theorem 4 guarantees that the
limit of h(Xn)/n (with n → ∞) exists and is finite.

Morse and Hedlund (1940) [65] formulated a definition of natural cod-
ings of irrational rotations. The modern version of this definition which
we present now, comes from Berthé (2009) [11]. An example is given in
Figure 1.10.

Definition 8 Let Ra:R/Z → R/Z, Ra(x) = x + a (mod1) be the rota-
tion of angle a of the 1-torus T = R/Z.
A sequence u = (un)n∈N ∈ {0, 1}ω is a natural coding of an irrational
rotation iff there exist a positive irrational a < 1 and x ∈ R such that

∀ n ∈ N, un = i ⇔ Rn
a(x) = na + x ∈ Ii (mod1),

with I0 = [0, 1−a[ and I1 = [1−a, 1[, or I0 =]0, 1−a] and I1 =]1−a, 1].

The following theorem (the formulation from [12, Th. 2.6]), which is the
basis for the interest in Sturmian sequences, combines two results, one
from Morse and Hedlund (1940) [65, p. 22, Th. 7.1] characterizing the
natural coding by the already mentioned Condition S, a property similar
to the balance, and one in Coven and Hedlund (1973) [27] establishing
the equivalence between balanced and Sturmian sequences.

Theorem 5 A sequence is a natural coding of an irrational rotation if
and only if it is Sturmian.

32



� /

� .

/

. � " � �

�

0 �

1 �

2 �

- �

5 � 3 �

4 �

Figure 1.10: Trajectory of rotation of angle a (with starting point x = 0).
Because a ∈ I0, 2a ∈ I1, 3a ∈ I0, 4a ∈ I1, 5a ∈ I0, 6a ∈ I0, 7a ∈ I1 and 8a ∈ I0,
the trajectory of this rotation is, according to Definition 8, 01010010 · · ·.

Sturmian trajectory in rotation on a torus gives an upper or lower me-
chanical word, by Theorems 5 and 4.

As we have seen, Sturmian words have quite a lot of equivalent defini-
tions with diverse characteristics—some of them are combinatorial, other
geometrical or connected with symbolic dynamics.

1.3.2 CF-based descriptions of Sturmian words
In Section 1.2.2 we listed researchers who presented CF-based descrip-
tions of digital straight lines. Now we will do the same for Sturmian
words.

It began with astronomer Johann III Bernoulli (1744–1807) in 1772 and
his analysis of a table of proportional parts. He noted some interesting
rules for evaluation of the tables. His problem consisted of finding the
nearest integers (dk(a))k∈N+ to a sequence of multiples of a given number
a which is the same as asking about the sequence

dk(a) = �ak + 0.5� for k = 1, 2, 3, . . . (1.9)

(compare this with (1.5)!), because we want −0.5 ≤ dk(a)− ak < 0.5. In
each step we increase the value of the element of the sequence by �a� or
by �a� + 1. Bernoulli showed (but he did not give a proof) in which way
the CF-expansion of a can be used to determine in which step we get
an increase by �a�, and in which by �a� + 1. He described these rules in
[7]. Bernoulli’s claim was proved by Markov in 1882 [61] and described in
English in Venkov (1970) [87, pp. 65–68]. This description has been widely
used by researchers in combinatorics on words; see for example Stolarsky
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(1976) [80], Ito and Yasutomi (1990) [45]. It is clear that it is equivalent
with a description of the characteristic word c(a). The description is as
follows.

Theorem 6 (Bernoulli, Markov, Venkov) For each positive irrational a
less than 1 with CF-expansion a = [0; a1, a2, a3, . . .], the characteristic
word is c(a) = C1C2C3 · · ·, where{

C1 = 0a1−11
D1 = 0a11

,

{
C2 = Ca2−1

1 D1

D2 = Ca2
1 D1

, · · · ,
{

Cn = Can−1
n−1 Dn−1

Dn = Can
n−1Dn−1.

The following description is by Shallit (1991) [75].

Theorem 7 Let a = [0; a1, a2, . . .] be irrational and (Xn)n∈N be such
that X0 = 0 and (Xi)i≥1 is the sequence of prefixes of c = c(a), the
characteristic word with the slope a (thus c is the 0-1-word defined by

cn = �(n + 1)a� − �na�

for n ≥ 1) with length defined by consecutive denominators qi of the
convergents in the CF-expansion of a, i.e., Xi = c1c2c3 · · · cqi for i ≥ 1.
Then Xn = Xan

n−1Xn−2 for n ≥ 2.

The same result can be found in Lothaire (2002) [60, p. 76] as Proposi-
tion 2.2.24. In [60, pp. 75, 76, 104, 105] we can find both methods quoted
above (in Theorems 6 and 7) and some relationships between them.

There is an intimate connection between the approach used by Shal-
lit and the notion of standard words and standard pairs. The following
description is heavily based on Lothaire (2002) [60, pp. 63–64]. Let us
define two functions Γ and Δ from {0, 1}� × {0, 1}� into itself:

Γ(u, v) = (u, uv), Δ(u, v) = (vu, v).

The set of standard pairs is the smallest set of pairs of words contain-
ing the pair (0, 1) and closed under Γ and Δ. A standard word is any
component of a standard pair. The beginning of the tree of standard
pairs is presented in Figure 1.11. We note a striking similarity between
the Stern–Brocot tree illustrated in Figure 1.2 and the tree of standard
pairs. (Compare the binary-word length of the words in the latter with the
numerators and denominators of the nodes in the former.) The leftmost
and rightmost paths are (0, 0n1), (1n0, 1) (n ≥ 1), corresponding to the
nodes 1/(n+1) and (n+1)/1. The rightmost beginning with (0, 01) and
the leftmost beginning with (10, 1) are (0(10)n, 01), (10, (10)n1) (n ≥ 1),
corresponding to the nodes (2n + 1)/2 and 2/(2n + 1).

This set-theoretic definition of standard words is based on Rauzy’s
method of construction of infinite standard Sturmian words as presented
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Figure 1.11: The top of the tree of standard pairs.

in Rauzy (1984) [70]; see also Berstel and de Luca (1997) [8], and Lothaire
(2002) [60, pp. 63–83].

Shallit (Theorem 7 above) and other researchers working independently
in the same period, and earlier, Fraenkel et al. (1978) [37], have thus
shown that standard words are basic building blocks for constructing
characteristic Sturmian words, in the sense that every characteristic Stur-
mian word is the limit of a sequence of standard words. We have namely
X0 = 0, X1 = 0a1−11, and Xn = Xan

n−1Xn−2 for n ≥ 2, (Xn)n∈N is thus
a standard sequence. From the definition of Γ and Δ, we get

(Xn, Xn−1) = Δan(Xn−2, Xn−1), (Xn−1, Xn) = Γan(Xn−1, Xn−2)

for n ≥ 2. Each characteristic word with irrational slope is thus a limit
of a sequence of standard words. The sequence (a1 − 1, a2, a3, a4, . . .) is
called the directive sequence of a; cf. Lothaire (2002) [60, p. 75].

In Paper III of this thesis we compare our method with the methods
described above and we show that our method is different. There are also
other places where we can find similar formulae, see for example Gaujal
and Hyon (2004) [40]. The method presented there does resemble ours,
but does not give any special attention to the CF-elements equal to 1,
which causes it not to reflect the run-hierarchical structure.

1.3.3 Fixed-point theorems for words
There exist different kinds of fixed-point theorems for words. Some of
them concern morphisms (substitutions), others are formulated for oper-
ators.
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1.3.3.1 Fixed-point theorems for morphisms
First we recall the notion of morphism.

Definition 9 Let A and B be finite alphabets. A morphism is a map
ϕ:A� → B� such that for all u, v ∈ A� we have ϕ(uv) = ϕ(u)ϕ(v).

It is clear from the definition that each morphism is uniquely determined
by its values over the alphabet A and that ϕ(ε) = ε. Further, we can
define the nth iteration of a morphism ϕ:A� → A�, ϕn(a), on a letter
a ∈ A, as follows:

ϕ0(a) = a, ϕn(a) = ϕ(ϕn−1(a)), n ≥ 1.

Non-erasing morphisms, i.e., such morphisms that ϕ(a) �= ε for each
a ∈ A, are called substitutions. If ϕ:A� → A� is such a substitution that
ϕ(a) = aw for some letter a ∈ A and some word w ∈ A+ (we say in such
cases: ϕ is extendable on a), then we have ϕ2(a) = awϕ(w), ϕ3(a) =
awϕ(w)ϕ2(w), . . ., and so on. This means that, for each n ∈ N, ϕn(a) is
a proper prefix of ϕn+1(a), and the limit of the sequence (ϕn(a))n∈N is
a unique infinite word

x = lim
n→∞ϕn(a) = ϕω(a) (= awϕ(w)ϕ2(w)ϕ3(w) · · ·). (1.10)

Such a word is then called a morphic (or substitutive) sequence and we
say that it is generated by ϕ. This gives an explanation why ϕ is called
extendable on a: we can define ϕω(a) = x ∈ Aω as in (1.10). This allows us
to talk about ϕ(x) even though ϕ is only defined on A�. Since ϕ(x) = x,
x is called a fixed point of the extended mapping ϕ.

Two really old examples we find in Berstel and Perrin (2007) [10,
pp. 998–999]. One of them is the first infinite square-free (i.e., not con-
taining two identical factors following immediately after each other) word
(defined in 1906) and the second one is the Thue–Morse word (defined
in 1912), both introduced and examined by Axel Thue. None of these
words is Sturmian. The 1906 word is the unique fixed point uT of the
substitution ϕ defined on the monoid generated by {a, b, c, d} as follows:

ϕ(a) = adbcb, ϕ(b) = abdcb, ϕ(c) = abcdb, ϕ(d) = abcbd,

i.e., uT = ϕ(a)ϕ(d)ϕ(b)ϕ(c)ϕ(b) · · · = adbcbabcbdabdcbabcdbabdcb · · ·.
The Thue–Morse word is the binary word wa which is one of the two

fixed points (particularly the one which begins with a) of the substitution
ψ defined on the monoid generated by {a, b} in the following way:

ψ(a) = ab, ψ(b) = ba,

i.e., wa = abbabaabbaababbabaababbaabbabaab · · ·. This word is overlap-
free (has no factors of the form uvuvu where u and v are some words and
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u is not empty) and can be defined in more than one way; see Berstel and
Perrin (2007) [10, pp. 999–1000] and Pytheas Fogg (2002) [69, pp. 35–41].

One of the most well-known examples of a fixed-point theorem for
Sturmian words is the result formulated by Shallit in 1991 [75] and, inde-
pendently, at more or less the same time, by Brown [23], Borel and Laubie
[14], and Ito and Yasutomi [45]; see the references in [75]. Shallit’s the-
orem (Theorem 8 below in this thesis) concerns characteristic words of
some irrational numbers as fixed points of substitutions. Somewhat later,
Crisp et al. (1993) [28] formulated necessary and sufficient conditions
for the CF-expansion of an irrational number α for the existence of a
non-trivial substitution ϕ which does not change the characteristic word
c(α) (then we say that c(α) is a fixed point of ϕ or that the sequence
c(α) is invariant under the substitution ϕ). The results are formulated
for both characteristic words and cutting sequences by the lines y = αx.
Here we recall only the theorem by Shallit, even though it is not in an
if-and-only-if form as the one in [28] mentioned above, because we use it
in Paper III.

Theorem 8 (Shallit, 1991) Let an irrational number a have a purely
periodic CF-expansion, i.e.,

a = [0; a1, a2, . . . , ar, a1, a2, . . . , ar, a1, a2, . . . , ar, . . .].

Define the morphism ϕ by ϕ(0) = Xr, ϕ(1) = XrXr−1, where (Xn)n∈N

are the prefixes of the characteristic word c(a) as defined in Theorem 7.
Then the infinite word c = c(a) is a fixed point of ϕ.

As an example we can take the Fibonacci word, the characteristic word
with the slope θ = [0; 1, 1, 1, . . .]. This word is the fixed point of ϕ(0) = 1,
ϕ(1) = 10, beginning with 1 (see Figure 1.12).
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� . � 0 � 1 � 2 � - � 5 � 3

Figure 1.12: The Fibonacci sequence w as the unique fixed point of the sub-
stitution ϕ(0) = 1, ϕ(1) = 10, beginning with 1. For i = 1, . . . , 7, we put ’Fi’
above the last letter of the prefix Fi = ϕi−1(1) as described in the text.

If we denote Fn = ϕn−1(1), so that F1 = 1 and F2 = 10 then, by
definition, the sequence of binary-word length (|Fn|)n∈N+ and |F0| = 1
forms the well-known Fibonacci sequence of numbers. This is where the
name of Fibonacci word (w—the infinite limit word limn→∞ ϕn−1(1) as
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described by (1.10) or, equivalently, obtained from the prefixes Fn as
limn→∞ Fn) comes from. We have clearly

Fi+1 = FiFi−1 for i ≥ 1,

which is illustrated in Figure 1.12. The 0-1-sequence has thus the same
property as the number sequence, but the operation we use instead of ad-
dition (as for numbers) is concatenation; see also Karhumäki (2004) [48,
p. 8], Pytheas Fogg (2002) [69, p. 7 and pp. 51–52]. In Lagarias (1992) [59,
pp. 63–66] one-dimensional quasicrystals (sequences with quasi-periodic
structure) are discussed and the Fibonacci word in that context is called
a Fibonacci quasicrystal. Following Lagarias (1992) [59, p. 64] we can call
the process of forming Fn from Fn−1 inflation. The Fibonacci word w
is a fixed point of the substitution rules ϕ, i.e., it is self-similar under
inflation. We also observe that finite Fibonacci words are standard, since
(F2, F1) = (10, 1) and, for n ≥ 1, (F2n+2, F2n+1) = ΔΓ(F2n, F2n−1); see
Lothaire (2002) [60, p. 64].

1.3.3.2 Fixed-point theorems for operators
The most well-known example of a word which is a fixed point of an
operator is the Kolakoski word ; see Kolakoski (1965) [56] and Pytheas
Fogg (2002) [69, p. 93]. The Kolakoski word is defined as one of the two
fixed points of the run-length encoding operator Δl: {1, 2}ω → Nω. The
value of this operator on

w =

{
1k12k21k32k4 · · · , if w ∈ 1 · {1, 2}ω

2k11k22k31k4 · · · , if w ∈ 2 · {1, 2}ω

is Δl(w) = k1k2k3 · · ·; see Brlek (1989) [20] and Brlek et al. (2008) [21].
Both fixed points of Δl are identical with their own run-length encoding
sequences. The one beginning with 2 looks like this:

K = 2211212212211211221211212211211212212211212212 · · · .

This word is obviously not Sturmian. Brlek et al. have studied some
generalizations of the Kolakoski word to an arbitrary alphabet, which
were named smooth words; see [21] and references there.

Our new CF-description of upper mechanical words with positive irra-
tional slopes less than 1 allows us to formulate an analogous fixed-point
theorem, for the run-construction encoding operator defined in Paper VI.
This theorem concerns only Sturmian words.
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2. Summary of papers

As we have seen, the problem of describing the sequence (�an�)n∈N+

for a positive irrational a less than 1 has appeared in many different
contexts. The main aim of this thesis is to introduce a new way of clas-
sifying and examining upper mechanical words (or, equivalently, digital
straight lines) with positive irrational slopes less than 1, according to
their run-hierarchical construction. We present our continued-fraction-
based method, compare it with some well-known methods of the same
kind, and show some ways in which our method can be used in order
to reach our aim. We define and examine two equivalence relations on
the set of slopes. We formulate and prove a new fixed-point theorem for
Sturmian words and describe the set of all fixed points in terms of one of
our equivalence relations.

Our journey begins in digital geometry. Papers I and II are about
digital lines. Then, in Paper III, we proceed to the combinatorics on
words. Papers IV and V are about both lines and words, with a slight
domination of lines. And, Paper VI is about Sturmian words.

The presentation of this thesis is scheduled for 25 September 2009, sev-
eral days after the end of Words 2009 (the 7th International Conference
on Words) and several days before the beginning of DGCI 2009 (the 15th
International Conference on Discrete Geometry for Computer Imagery).
That symbolically categorizes the topics covered in this thesis, somewhere
between digital geometry and combinatorics on words.

2.1 Paper I
In Paper I we deal with digital half-lines with positive irrational slopes
less than 1. For each a ∈ ]0, 1[ \ Q we introduce digitization parameters,
which determine the construction of a digital line y = ax in terms of
digitization runs on all levels.

The concept of run was already introduced and explored by Azriel
Rosenfeld in 1974 [72, p. 1265]. We call runk(j) for k, j ∈ N+ a run of
digitization level k. Each run1(j) can be identified with a subset of Z2

{(i0 + 1, j), (i0 + 2, j), . . . , (i0 + m, j)}, (2.1)

where m is the length ‖run1(j)‖ of the run; see Figure 2.1.
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Figure 2.1: Digitization runs of level 1 in the R′-digitization of the line y = ax:
run1(1) and run1(2).

For each a ∈ ]0, 1[\Q we have only two possible run1 lengths:
⌊

1
a

⌋
and⌊

1
a

⌋
+1. All the runs with one of those lengths always occur alone, i.e., do

not have any neighbors of the same length in the sequence (run1(j))j∈N+ ,
while the runs of the other length can appear in sequences. The same
holds for the sequences (runk(j))j∈N+ on each level k ≥ 2. We use the
notation Sm

k Lk, LkS
m
k , Lm

k Sk and SkL
m
k , when describing the form of

digitization runsk+1 (where the index k+1 refers to the digitization level
number k + 1). For example, Sm

k Lk means that the runk+1 (short Sk+1

or long Lk+1) consists of m short runsk (Sk) and one long runk (Lk) in
that order; see Figure 2.2 and the four-cases formula for Pk in Theorem 9
(p. 41 in this thesis).

At the end of Paper I we can find two pointers (Lemma 3.15 and
Theorem 3.16) in the direction of continued fractions (CF).

2.2 Paper II
We continue our work concerning digital lines in Uscka-Wehlou (2008)
[83], where we introduce the index jump function, which makes it possible
to express the results from Paper I in terms of CFs.

Definition 10 For each positive irrational a less than 1, the index jump
function ia:N+ → N+ is defined by ia(1) = 1, ia(2) = 2 and

ia(k+1) = ia(k)+1+δ1(aia(k)) for k ≥ 2, where δ1(x) =

{
1, x = 1
0, x �= 1 ,

and aj for j ∈ N+ are the CF-elements of a.

In Paper II we show how CF-elements of the slope describe the run-
hierarchical structure of a digital line as defined by Azriel Rosenfeld.

In Theorem 9 (p. 2250 in Paper II) we express the digitization param-
eters defined in Paper I in terms of CF-elements of the slope a of the line
and the index jump function corresponding to a.
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Figure 2.2: Runs of runs of runs of . . ..

In Theorem 10 (p. 2250 in Paper II) we take one more step towards
the translation of the description by digitization parameters into a CF
based description of runs, formulated in Theorem 11.

Further in Paper II we give some examples of irrational slopes with
a periodical CF-expansion (quadratic surds) and irrational slopes with a
periodical pattern in their CF-expansions. We describe with exact formu-
lae the digitization runs for lines with such slopes. We also present the
link between the digitization parameters and the Gauss map.

2.3 Paper III
Paper III revolves around the run-hierarchical structure of upper mechan-
ical words with irrational positive slopes less than 1. For upper mechanical
words, the counterpart of the run1(j) ⊂ Z2 as described by (2.1) is run
10m−1, when m− 1 is the number of recurring letter 0 between the letter
1 in the beginning of the run and the next occurring letter 1 in the word.
We formulate the following theorem (Theorem 3 in Paper III).

Theorem 9 (a run-hierarchical CF description of s′(a)) Let
a ∈ ]0, 1[ \Q and a = [0; a1, a2, . . .]. For the upper mechanical word s′(a)
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we have s′(a) = limk→∞ Pk, where P1 = S1 = 10a1−1, L1 = 10a1 , and,
for k ≥ 2,

Pk =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Lk = S
aia(k)

k−1 Lk−1 if aia(k) �= 1 and ia(k) is even
Sk = Sk−1L

aia(k)+1

k−1 if aia(k) = 1 and ia(k) is even
Sk = Lk−1S

−1+aia(k)

k−1 if aia(k) �= 1 and ia(k) is odd
Lk = L

1+aia(k)+1

k−1 Sk−1 if aia(k) = 1 and ia(k) is odd,

where ia is the index jump function corresponding to a. The meaning
of the symbols is the following: for k ≥ 1, Pk means Prefix number k,
Sk means Short runk and Lk means Long runk. To make the recursive
formula complete, we add that for each k ≥ 2, if Pk = Sk, then Lk is
defined in the same way as Sk, with the only difference being that the
exponent defined by aia(k) (or by aia(k)+1) is increased by 1. If Pk = Lk,
then Sk is defined in the same way as Lk, with the only difference being
that the exponent defined by aia(k) (or by aia(k)+1) is decreased by 1.

The second main result of Paper III (Theorem 6 there) is the following.

Theorem 10 (a quantitative description of runs) Let a ∈ ]0, 1[\Q
and a = [0; a1, a2, . . .]. For the word s′(a) we have for all k ∈ N+:

|Sk| = qia(k+1)−1 and |Lk| = qia(k+1)−1 + qia(k+1)−2,

where ia is the index jump function, |Sk| and |Lk| for k ∈ N+ denote
the binary-word length of short, respectively long runs of level k as in
Theorem 9, and qk are the denominators of the convergents in the CF-
expansion of a.

This theorem allowed us to present a comparison between our method
of producing prefixes and two other well-known methods, namely,
the method using standard sequences and the method formulated by
Bernoulli, proven by Markov, and described in Venkov (1970) [87]. The
comparison contained in Paper III shows clearly that our method is
different from the two other methods and that the other methods do not
reflect the hierarchy of runs as defined by Rosenfeld.

2.4 Papers IV and V
The first three papers are actually a prelude to the real work, which begins
with Paper IV. The strength and the originality of our method using CFs
lies in the special treatment which we give to some CF-elements equal to
1. This allows us to fully explore the run-hierarchical structure of digital
lines or, equivalently, of upper mechanical words. Probably the clearest
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formulation of this coding of the run-hierarchical structure by CFs can
be found in Paper VI. There we find the following corollary which states
that the value of the index jump function for each natural k ≥ 2 describes
the index of the CF-element which selects the most frequent run on level
k−1 (denoted maink−1). The corollary also describes the cardinality-wise
run length on each digitization level and shows how to draw conclusion,
for each k ≥ 2, from the parity of ia(k) about what kind (long Lk−1 or
short Sk−1) of prefix Pk−1 (as obtained in Theorem 9) we get.

Corollary 1 Let a ∈ ]0, 1[ \ Q and a = [0; a1, a2, a3, . . .]. If s′(a) is the
upper mechanical word with slope a and intercept 0 then, in the run-
hierarchic structure of s′(a), we have for each k ≥ 2
• aia(k) ≥ 2 ⇒ maink−1 = Sk−1,
• aia(k) = 1 ⇒ maink−1 = Lk−1,
• ia(k) is odd ⇒ Pk−1 = Lk−1,
• ia(k) is even ⇒ Pk−1 = Sk−1,

where ia is the corresponding index jump function. Moreover,
the cardinality-wise run length on each level is the following:
‖Sn‖ = bn, ‖Ln‖ = bn + 1, where

b1 = a1 and, for n ≥ 2, bn =

{
aia(n), aia(n) �= 1
1 + aia(n)+1, aia(n) = 1 .

This corollary explains the influence of those elements in the
CF-expansion a = [0; a1, a2, a3, . . .] which are indexed by the values
of the index jump function corresponding to a on the run-hierarchical
structure of the word s′(a) (the line y = ax). For each k ≥ 2, the value
of aia(k) determines how the runs on level k (runsk) are constructed of
runs on level k − 1 (runsk−1). As an example, look to the line found in
Figure 2.2. Both for the digital lines y = ax and, equivalently, for the
words s′(a) (described according to their run-hierarchical construction)
with a = [0; 1, 2, 1, 1, 3, 1, 1, a8, a9, . . .] where a8, a9 ≥ 2, we have:

k aia(k+1) = 1? maink ia(k + 1) bk prefix Pk of s′(a)
1 aia(2) = a2 = 2 ≥ 2 S1 even 1 S1 = 1
2 aia(3) = a3 = 1 L2 odd 2 L2 = S2

1L1 = 1110
3 aia(4) = a5 = 3 ≥ 2 S3 odd 2 L3 = L2

2S2

4 aia(5) = a6 = 1 L4 even 3 S4 = L3S
2
3

5 aia(6) = a8 ≥ 2 S5 even 2 S5 = S4L4

6 aia(7) = a9 ≥ 2 S6 odd a8 L6 = Sa8
5 L5

In Paper IV we define two equivalence relations. Equivalence rela-
tion ∼len identifies all the slopes a ∈ ]0, 1[ \ Q with the same sequence
of length specifications. In the equivalence class under ∼len defined by
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Figure 2.3: Equivalence classes under ∼len; in each class we can distinguish
four particularly significant members: amax, amin = along, ashort, and afix.

(b1, b2, b3, . . .) we can distinguish four special slopes, which is illustrated
in Figure 2.3. These are:
• amax = [0; b1, b2, 1, b3 − 1, 1, b4 − 1, 1, b5 − 1, . . .] which is the largest

slope in the class; in the run-hierarchical structure of s′(amax) the short
run is dominating only on level 1,

• amin = along = [0; b1, 1, b2 − 1, 1, b3 − 1, 1, b4 − 1, . . .] which is the
smallest slope in the class; on all levels the long run dominates,

• ashort = [0; b1, b2, b3, b4, . . .] with the short run dominating on all levels
in the run-hierarchical structure,

• afix such that γ(afix) = c(afix), where γ(afix) is the constructional word
(which will be discussed in Section 2.5 of this thesis) associated with
s′(afix) = 1c(afix).

If (bn)n∈N+ = (1, 2, 2, 2, 2, . . .), as in Example 6 in Paper VI, we get:
• amax = [0; 1, 2, 1, 1, 1, 1, 1, . . .] =

√
5+3√
5+5

≈ 0.7236,

• amin = along = [0; 1, 1, 1, 1, . . .] =
√

5−1
2 ≈ 0.618, the slope of the

Fibonacci word,
• ashort = [0; 1, 2, 2, 2, 2, . . .] =

√
2

2 ≈ 0.7071,
• afix = [0; 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, . . .] ≈ 0.6327822 . . ..

One can work further with these classes and try to find some relations
between the words amax, ashort, afix and amin = along. Let us for example
calculate how amax and amin depend on each other in the general case. If
we denote A = [0; b2, 1, b3 − 1, 1, b4 − 1, 1, b5 − 1, . . .], then (by Lemma 5
from Paper II) [0; 1, b2 − 1, 1, b3 − 1, 1, b4 − 1, 1, b5 − 1, . . .] = 1−A, thus

amax =
1

b1 + A
, amin =

1
b1 + 1 − A

. (2.2)
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This gives
1

amin
+

1
amax

= 2b1 + 1, thus amin =
amax

(2b1 + 1)amax − 1
. (2.3)

The second equivalence relation defined in Paper IV is ∼con, based on
a run construction in terms of long and short runs on all levels. We group
in classes the lines with the same type (short or long) of runs dominating
on corresponding levels.

No equivalence class under ∼con has a least element. The infimum
in each class is equal to zero. The answer related to the greatest ele-
ments is much more interesting. The partition of all the irrational num-
bers from the interval ]0, 1[ into equivalence classes under ∼con gives sets
with suprema equal to the odd-numbered convergents of the Golden Sec-
tion, thus with no largest element belonging to the class (which is a
set of irrational numbers). The only exception is the class generated by
(sn)n∈N+ = (2n)n∈N+ , which has a greatest element and it is equal to
the Golden Section.

In Paper V we take another look at the equivalence relation defined
by run construction, this time independently of the context. This gives a
general result for CF-expansions of a ∈ ]0, 1[ \ Q.

2.5 Paper VI
In Paper VI, the last paper in this thesis, we define the run-construction
encoding operator Δc (Definition 6 in Paper VI), analogous to the well-
known run-length encoding operator Δl mentioned on p. 38 in this thesis.
The definition of the former is slightly more complicated than the defini-
tion of the latter. In order to introduce it, we have to define a construc-
tional word γ(a), a new binary word associated with a positive irrational
a less than 1. The nth letter of the constructional word is:
• the letter 1 if the dominating run in the run-hierarchical construction

of s′(a) on level n is the long run,
• the letter 0 if the dominating run in the run-hierarchical construction

of s′(a) on level n is the short one.
The Sturmian word s′(a) is a fixed point of the run-construction en-
coding operator if the corresponding characteristic word c(a) is equal
to the constructional word γ(a). Such a word is then called a Sturmian
word with self-balanced construction. In Paper VI we show that in each
equivalence class under ∼len there exists exactly one fixed point of the
run-construction encoding operator. Theorem 4 in Paper VI is a new
fixed-point theorem for Sturmian words.
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3. Sammanfattning på svenska

Digitala linjer, sturmianska ord och kedjebråk

I centrum av denna avhandling står vissa heltalsföljder. Dessa bildas
på följande sätt: vi tar ett positivt irrationellt tal a mindre än 1 och
letar efter de heltal dm(a) för m = 1, 2, 3, . . . som bäst approximerar
motsvarande multipel am för m = 1, 2, 3, . . .. Det betyder att vi söker en
följd (dm(a))m∈N+ sådan att för varje positivt heltal m

− 1
2 ≤ dm(a) − am < 1

2 , alltså dm(a) = �am + 1
2�, (3.1)

där �x� för x ∈ R betyder avrundningen nedåt till närmaste heltal. Denna
fråga ställdes först 1772, då astronomen Johann III Bernoulli analyser-
ade en tabell av proportionella delar. Det är tydligt att vi, medan vi
bygger upp följden (dm(a))m∈N+ , i varje steg adderar antingen 0 (som
är lika med �a�) eller 1 till det föregående elementet i följden. Bernoulli
formulerade vissa regler som gäller för att man skall veta i vilket steg
elementet ökar och i vilket det förblir oförändrat. Dessa regler hänger
nära ihop med kedjebråkutvecklingen av talet a, vilket, av vissa skäl som
blir tydliga snart, kallas för lutningen. Bernoulli bevisade inte formellt
sina påståenden, men det gjorde A. Markov 1882. Han undersökte en
homogen talföljd

hm(a) = �am� (3.2)

i stället (vilket vi också gör i denna avhandling). Beskrivningen
av problemet och dess lösning publicerades på engelska 1970, i
översättningen av Venkov’s Elementary number theory. Där, på sidan 67,
hittar vi följande exempel. Om vi tar a =

√
2−1, så får vi följande tabell:

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
�am� 0 0 1 1 2 2 2 3 3 4 4 4 5 5 6

m 16 17 18 19 20 21 22 23 24 25 26 · · ·
�am� 6 7 7 7 8 8 9 9 9 10 10 · · ·

Först får vi alltså ett block av nollor (blockets längd är två), efteråt ett
block av ettor (två), tvåor (tre), treor (två), fyror (tre), femmor (två),
sexor (två), sjuor (tre), åttor (två), nior (tre), tior (två), o.s.v. Redan
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Bernoulli upptäckte att hur blocken för ett visst a ser ut beror på kedje-
bråkutvecklingen av a. I detta fall har vi

a =
√

2 − 1 =
1

2 +
1

2 +
1

2 +
1
· · ·

= [0; 2, 2, 2, . . .] = [0; a1, a2, a3, . . .]

och därför, eftersom a1 = 2, får vi blocklängden 2 eller 3. Inte nog
med det, blocken med längd 3 är alltid ensamma i längdföljden
(2, 2, 3, 2, 3, 2, 2, 3, 2, 3, . . .). Grupperar vi nu alla tvåor som kommer
efter varann i följden av längder tillsammans med den trea som följer
efter dem i ett block av block, så får vi en ny följd,

({2, 2, 3}, {2, 3}, {2, 2, 3}, {2, 3}, {2, 2, 3}, {2, 3}, {2, 3}, {2, 2, 3}, {2, 3}, . . .),

följden av blockens block, vilken har samma egenskaper som den ur-
sprungliga följden! Detta heter på engelska self-similarity—följden är kon-
struerad enligt regler som liknar följden själv. Även i följden av blockens
block har vi två olika block, i vårt exempel {2, 2, 3} som är alltid ensam
i följden, och {2, 3} som kan komma med flera efter varann. I denna and-
ra, deriverade följd har blocken av block längder definierade av a2 = 2
och a2 + 1 = 3. Med längden menar man här antalet block i blockens
block, alltså kardinaliteten av mängden av block (så har vi till exempel
att längden av {2, 2, 3} är tre). Undersöker man en större del av följden,
märker man att detsamma som gäller block, tillämpas även på blockens
block (på engelska, runs of runs), block av blockens block, o.s.v. Vi kan
skriva block1, block2, block3, o.s.v. i stället, för att antyda med siffran
på vilken nivå i hierarkin av block vi befinner oss. Grupperar vi block2

som maximala delar {{2, 2, 3}, {2, 3}} och {{2, 2, 3}, {2, 3}, {2, 3}}, får vi
en följd av block3, igen med samma egenskaper (två olika block3-längder
definierade av a3 = 2 och a3 +1 = 3, långa block3 alltid ensamma i följd-
en, medan korta block3 kan komma med flera efter varann). I vissa fall är
det långa blockk som kommer med flera efter varann. Detta händer om
kedjebråkelementet som bär information om nivå k är lika med 1. Detta
analyserar vi noggrant i våra artiklar.

Följderna som vi just har beskrivit har åtnjutit enormt stor uppmärk-
samhet av forskare på många olika områden de senaste sjuttio åren. Ett
av dessa områden är digital geometri och objekt som beskrivs med hjälp
av sådana följder kallas digitala linjer. På bild 3.1 ser vi ett exempel på
den digitaliserade räta linjen y = ax, där a =

√
2− 1 = [0; 2, 2, 2, . . .]. Vi

observerar likheten med tabellen ovan i denna sammanfattning. På bilden
kan man även se hierarkin av korta och långa block (run hierarchy) på
alla nivåer.
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Figure 3.1: Digitaliserad linje y = ax där a =
√

2−1 = [0; 2, 2, 2, . . .]. På bilden
kan man se hierarkin av block. Block på nivå k (för k = 1, 2, 3, 4) markeras
med blockk; Lk står för ett långt block, Sk betyder ett kort block (från engelska
L—long och S—short).

Begreppet run i konstruktion av digitala linjer introducerades av Azriel
Rosenfeld 1974. Sambandet mellan block-hierarkin och kedjebråk upp-
märksammades så gott som omedelbart och påpekades av Brons redan
samma år. Sedan dess har det gjorts många olika både algoritmiska och
teoretiska beskrivningar av digitala linjer med hjälp av kedjebråk.

Formler som beskriver den block-hierarkiska strukturen med hjälp av
kedjebråk är användbara inom datagrafik. De tillåter oss att producera
snabba och effektiva algoritmer för att rita räta linjer på skärmen.

Om vi nu undersöker följden av skillnader i (3.2)

cm(a) = hm+1(a) − hm(a) = �a(m + 1)� − �am� (3.3)

i stället för själva (hm(a))m∈N+ , så får vi det karakteristiska ordet för
a i stället för digitala linjer. Ordteorin är det andra området där man
arbetade med de följder som vi beskriver i denna avhandling. Följder
i (3.3) för irrationella lutningar a formar så kallade sturmianska ord,
som har sina rötter i symbolisk dynamik och som har många ekvivalenta
definitioner av olika karaktär (geometriska, kombinatoriska, analytiska).

I den engelskspråkiga delen av kappan har vi förklarat i detalj varför
det är viktigt att undersöka följderna i (3.1)–(3.3). I artiklarna som följer
(Papers I–VI) presenterar vi våra egna resultat som alla är relaterade
till sådana följder. Vi presenterar en ny beskrivning av digitala linjer
och sturmianska ord som är baserad på kedjebråkutvecklingen av
lutningen och som reflekterar den hierarkiska strukturen av blocken som
definierades av Rosenfeld. Det som gör vår lösning unik är den speciella
roll som vissa kedjebråkelement lika med 1 i kedjebråkutvecklingen får i
formeln. Allt styrs av den så kallade index-hopp-funktionen, på engelska
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index jump function.

Definition För varje positivt irrationellt tal a mindre än 1, definieras
index-hopp-funktionen ia:N+ → N+ på följande sätt:
ia(1) = 1, ia(2) = 2, och

ia(k + 1) = ia(k) + 1 + δ1(aia(k)) för k ≥ 2, där δ1(x) =

{
1, x = 1
0, x �= 1 ,

och aj för j ∈ N+ är kedjebråkselementen för a.

Vi visar på vilket sätt man kan avläsa den hierarkiska strukturen av räta
digitala linjer (sturmianska ord) från kedjebråkselement för lutningen och
med hjälp av index-hopp-funktionen. Vi definierar två ekvivalensrelat-
ioner som delar upp mängden av lutningar ]0, 1[ \ Q i ekvivalensklasser.
En uppdelning är definierad med hjälp av blocklängd på varje nivå (med
detta menas längden av blockk för varje k ∈ N+). Den andra uppdel-
ningen grupperar ihop alla lutningar som leder till samma konstruktion
av digitala linjer (sturmianska ord). Vi presenterar några satser om min-
imala och maximala element i alla klasser för båda ekvivalensrelationerna.

I den sista artikeln formulerar vi och bevisar en ny fixpunktssats för
sturmianska ord. Fixpunkter är sådana ord som själva innehåller kod-
ningen för sin hierarkiska struktur. Vi visar att det finns exakt en fix-
punkt i varje klass under ekvivalensrelationen definierad av blocklängden
på alla nivåer.
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PAPER I, ERRATA

1. p. 168, line 21

is: twice

should be: and ni+1 − 1

2. p. 169, line 4

is: a = [0, k1, . . . , ki, 1, 1, ki+2, . . . , kn]

should be: a = [0, k1, . . . , ki, 1, ki+1 − 1, ki+2, . . . , kn]

3. p. 169, item [7] in References

is: calculus

should be: calcul
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Abstract

How to construct a digitization of a straight line and how to be able to recognize a straight line in a set of pixels are very
important topics in computer graphics. The aim of the present paper is to give a mathematically exact and consistent description of
digital straight lines according to Rosenfeld’s definition. The digitizations of lines with slopes 0 < a < 1, where a is irrational, are
considered. We formulate a definition of digitization runs, and formulate and prove theorems containing necessary and sufficient
conditions for digital straightness. The proof was successfully constructed using only methods of elementary mathematics. The
developed and proved theory can be used in research into the theory of digital lines, their symmetries, translations, etc.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Digital geometry; Theory of digital lines; Irrational slope; Continued fractions

1. Introduction

Our aim here is to give a mathematically exact and consistent description of digital straight lines according to
Rosenfeld’s definition [8]. We will consider the digitizations of lines with slopes 0 < a < 1 where a is irrational.
The theory for such lines appears to be very elegant and simple. When treating rational slopes together with irrational,
however, we are forced to deal with special cases and exceptions which would make the theory less clear.

A detailed review on digital straightness can be found in Rosenfeld and Klette [9]. Necessary and sufficient
conditions for digital straightness are formulated there; see for example Wu’s theorem from 1982 (Theorem 3.5 in
Rosenfeld and Klette [9]). Different approaches and kinds of proofs (algorithms, using word theory, etc.) are also
discussed there.

There has been done a lot of research concerning digital straightness lately; see for example Reveillès [7], Debled
[2] and Vittone [12]. They describe digital lines with rational slopes. Lines with irrational slopes, however, have not
got enough attention in scientific papers. There are very few researchers dealing with this subject. Some of them have
used the link between combinatorics on words and digital lines and planes; see Arnoux et al. [1] and Jamet [4]. We
present a description of digital lines with irrational slopes without using any advanced theories.

∗ Tel.: +46 73 9600123.
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0304-3975/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2007.02.037
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Stephenson and Litow [10,11] have described fast algorithms for drawing digital lines with rational slopes.
Although the present paper covers the theory for lines with irrational slopes, one can easily use it as a basis for
the formal proof of the results for lines with rational slopes presented by them.

The central role in the construction of the theory presented here is played by Lemma 3.6. The most important
definitions are Definitions 3.4 and 3.7. The main results are formulated in Theorem 3.13 and Corollary 3.14 (necessary
conditions to be a digital line with irrational slope). The corollary is more practically useful than the theorem itself. A
sufficient condition to be a digital line with irrational slope is formulated in Theorem 3.17.

The proof of the necessary condition for digital straightness is based on as elementary mathematics as possible,
without resorting to algorithms.

2. Rosenfeld’s digitization

Rosenfeld’s definition of the digitization of a straight line can be presented as follows. See also Rosenfeld [8] and
Melin [6].

Rosenfeld’s plane can be identified with Z2. With each point (k, n) of this plane we can associate the following
two subsets of R2:

SR(k, n) =
]

k − 1
2
, k + 1

2

]
×

]
n − 1

2
, n + 1

2

]

and

CR(k, n) =
(

{k} ×
]

n − 1
2
, n + 1

2

] )
∪

( ]
k − 1

2
, k + 1

2

]
× {n}

)
.

We will call them R-squares and R-crosses in (k, n) respectively. One can easily see that the R-squares form a partition
of R2, i.e.:

R2 =
⋃

(k,n)∈Z2

SR(k, n), and

(k1, n1) �= (k2, n2) ⇒ SR(k1, n1) ∩ SR(k2, n2) = ∅.

Rosenfeld’s digitization of a straight line l (which we will denote by DR(l)) is the set of all (k, n) in Z2 for which the
intersection of l and CR(k, n) is not empty:

DR(l) = {(k, n) ∈ Z2; l ∩ CR(k, n) �= ∅}.
For some lines, such as y = x + 1

2 , we obtain thick digitizations which can be adjusted to one pixel thin lines
(naive lines according to Reveillès [7]) by elimination of some pixels; see Melin [6, Section 1] and Kiselman
[5, Theorem 6.1].

We will discuss the digitization of the positive half line only, i.e., the digitization of y = ax where x > 0 (rays in
Rosenfeld and Klette [9]), since the digitization of the negative half line can be derived by symmetries.

It is worth mentioning that the slope is the most important feature characterizing a digital line:

• Two lines y = a1x + b1 and y = a2x + b2 where a1 �= a2 cannot have the same digitization, because
|a1x + b1 − (a2x + b2)| → ∞ when x → ∞. The slope is thus determined by the digitization and this is
why we can say that a digital line has a slope.

• Two lines y = ax + b1 and y = ax + b2, where b1 �= b2, can have the same digitization, like for example lines
y = 2

5 x and y = 2
5 x + 1

40 . Parallel translated lines cannot always be distinguished in their digitized form.

Exact description of those two items can be found in Rosenfeld and Klette [9], formulated in Theorem 1.2 (theorem
of Bruckstein).



H. Uscka-Wehlou / Theoretical Computer Science 377 (2007) 157–169 159

Fig. 1. R-cross and R′-cross in (0, 0). AB = A′ B′, so DR′ (y = ax) = DR(y = ax + 1
2 ).

3. The necessary and sufficient conditions

We are mainly interested in straight lines with an irrational slope between 0 and 1 which pass through the origin,
i.e., lines y = ax where 0 < a < 1 and a is irrational. Digitizations of lines with irrational slopes a < 0 and a > 1
can be obtained by a change of coordinates; see Rosenfeld [8].

In order to make it easier to handle descriptions and equations, we will modify the definition of the R-digitization
by changing the definitions of R-squares and R-crosses in the following way:

SR′(k, n) =
]

k − 1
2
, k + 1

2

]
× ]n − 1, n] = SR

(
k, n − 1

2

)

and

CR′(k, n) = ({k} × ]n − 1, n]) ∪
( ]

k − 1
2
, k + 1

2

]
×

{
n − 1

2

})
= CR

(
k, n − 1

2

)
.

We call these R′-squares and R′-crosses respectively. Then we define the R′-digitization of line l as follows:

DR′(l) = {(k, n) ∈ Z2; l ∩ CR′(k, n) �= ∅} = {(k, ak�); k ∈ Z}.
Fig. 1 shows a comparison of the two digitizations.
The R′-digitization of the line with equation y = ax is equal to the R-digitization of y = ax + 1

2 :

(k, n) ∈ DR

(
y = ax + 1

2

)
⇔ n − 1

2
< ak + 1

2
� n + 1

2
⇔ n − 1 < ak � n

⇔ (k, n) ∈ DR′(y = ax).

This is also illustrated in Fig. 1.
If 0 < a < 1, then f (x) = ax is a function and it is increasing, so the R′-digitization of line l with equation

y = ax consists of horizontal runs:

run(n) = {(k, n) ∈ DR′(l)} = {(k, n) ∈ Z2; n − 1 < f (k) � n}
(hence  f (k)� = n), where the second coordinate gives an enumeration of R′-digitization runs. We can also talk about
the first, second, . . . , last element of a run, using the order in Z on the first coordinate. For example, the last element
of run(0) is (0, 0), the first element of run(1) is (1, 1), since a ∈]0, 1[ (see Fig. 2).

We define the length of a run as the number of its elements, thus its cardinality card(run(n)).
First we will describe the R′-digitization on the level of runs as defined above. From now on, when we write

digitization, we refer to the R′-digitization. Because we only analyze straight lines y = ax (where 0 < a < 1, and a
is irrational) for x > 0, we begin the description of the digitization with run(1). We use the notation N+ = N � {0}.

The following lemma is useful for further calculations:

�

� �

�

��

� �

� � � � � � � � � �

� � 	 
 � � �  � �  � � � � � � � � 	 
 � � �  � �  � � � � �

� � � �� � � �

� � � � � � � �

� � � � �� � � � �

�

�

� �

� �
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Fig. 2. Digitization runs.

Lemma 3.1. If σ �= 0, then for every number i ∈ N+ the value of � i
σ
� − � i−1

σ
� is one of two consecutive natural

numbers � 1
σ
� and � 1

σ
� + 1.

We observe that � i
σ
� is increasing (or decreasing, if σ < 0) on average like i

σ
(i.e., we have � i

σ
�/ i

σ
→ 1 when

i → ∞), thus the average of � i
σ
� − � i−1

σ
� over intervals [1, k]Z with k → ∞ is 1

σ
, meaning

lim
k→∞

1
k

k∑
i=1

(⌊
i
σ

⌋
−

⌊
i − 1

σ

⌋)
= 1

σ
.

Lemma 3.1 says that � i
σ
� − � i−1

σ
� for i ∈ N+ can have only one of the two possible values: � 1

σ
� and � 1

σ
� + 1. This

means that � i
σ
� − � i−1

σ
� takes the value of � 1

σ
� and � 1

σ
� + 1 with such frequencies that the average is 1

σ
. This implies

that � 1
σ
� must appear with frequency 1 − frac( 1

σ
) and � 1

σ
� + 1 with frequency frac( 1

σ
), because(

1 − frac
(

1
σ

)) ⌊
1
σ

⌋
+ frac

(
1
σ

) (⌊
1
σ

⌋
+ 1

)
= 1

σ
.

By frequency of value � 1
σ
� (resp. � 1

σ
� + 1) we mean the limit (when k → ∞) of the number of these i ∈ [1, k]Z for

which � i
σ
� − � i−1

σ
� = � 1

σ
� (resp. � 1

σ
� + 1) divided by k. Expressed symbolically, the frequency of value � 1

σ
� is

lim
k→∞

1
k

card(S(k)), where S(k) =
{

i ∈ [1, k]Z;
⌊

i
σ

⌋
−

⌊
i − 1

σ

⌋
=

⌊
1
σ

⌋}
.

Later (in Lemma 3.6) we will indicate in detail for which i we get which values of � i
σ
� − � i−1

σ
�.

Proof. For each x, y ∈ R we have:

�x + y� =
⎧⎨
⎩

�x� + �y� if frac(x) + frac(y) < 1

�x� + �y� + 1 if frac(x) + frac(y) � 1.

Taking x = i−1
σ

and y = 1
σ

, we get the assertion of the lemma. �

We can use Lemma 3.1 for the proof of the following proposition about the digitization runs:

Proposition 3.2. For the digitization of the half line y = ax (where x > 0, a is irrational and 0 < a < 1) we have:

1. The length of the run( j) for j ∈ N+ is equal to � j
a � − � j−1

a �.
2. There are exactly two run lengths in the digitization: � 1

a � (short runs) and � 1
a � + 1 (long runs).

3. The first run is short.

Proof. In this proof, i counts the elements within runs, j counts the runs. Let j ∈ N+ be given. We examine the
function f (x) = ax for all integer arguments greater than or equal to 1, which we will call i (thus i ∈ N+). According
to the definition of the R′-digitization, we have:

(i, j) ∈ run( j) ⇔ j − 1 < f (i) � j ⇔ j − 1
a

< i � j
a

⇔
⌊

j − 1
a

⌋
< i �

⌊
j
a

⌋

� � � � � �  � � � �  � � �  � �  !  " � � � �  �  � �  � � �  � � � # �  � � � $ � � � � � �  � %  � � �  � � � � �  � � � �  � � � �   " � � � � � �  � � �  � � �  � � � � �  � �  � �  � � �  & � 	 � � 
 � '
) � �  � � � �  & � � � � " � �  � � �  � � �  � %   
 � � � � �  � �  � � �  # �  � � � $ � � � � � �  	 � � � � � � � �   
 � � � � �  # � % � � � #  � " � * �  � 
 �  +  � 
  ! '

m i n
m a x

( 0 , 0 )r u n ( 0 )

r u n ( 1 )( 1 , 1 )

?

?
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(the second equivalence we get because a > 0, the third one because i ∈ Z). This means that the run( j) for j ∈ N+
begins in (� j−1

a � + 1, j) and ends in (� j
a �, j), and this means that the length of run( j) for j ∈ N+ is equal to

� j
a � − � j−1

a �, which proves assertion 1. In particular, for j = 1: the first run begins in (1, 1) and ends in (� 1
a �, 1), so

its length is � 1
a �. This means that the first run is short for all a, which proves assertion 3. Assertion 2 of the proposition

follows now from Lemma 3.1, by replacing σ with a. �

Our aim in this paper is a full description of the digitization of a given straight half line l (x > 0) with equation
y = ax , where 0 < a < 1 and a is irrational. The first level of digitization has already been discussed. The notion
of digitization level k will be formulated later. The digitization parameters, which will be defined now, are sufficient
to derive a complete description of the digitization of the line they come from. In the definition of the digitization
parameters we will use the following modification operation ·∧ : [0, 1] → [0, 1

2 ]:
Definition 3.3. For t ∈ [0, 1] we define t∧ = min(t, 1 − t).

Definition 3.4. For y = ax where 0 < a < 1 and a is irrational, the digitization parameters are:

σ1 = frac( 1
a ),

σk = frac
(
1/σ∧

k−1
)

for all natural k > 1.

For j ∈ N+, σ j and σ∧
j are the digitization parameters and modified digitization parameters of the digitization level

j respectively.

For an irrational slope a there exist parameters σ j for all j ∈ N+. We have 0 < σ j < 1 and σ j is irrational for all
j ∈ N+. The definition of σ1 differs from the definition of σ j for natural j � 2, since digitization runs of the first level
as described in Proposition 3.2 are built of elements of one kind (elements of Z2) while the runs on all the following
digitization levels will be composed of two kinds of element (short and long). We will use the digitization parameters
to compute the length of the runs on all the levels. To compute it correctly, it is important to know which kind of
element is the most frequent on each level and how to use the digitization parameters in both cases, i.e., depending
on whether the short element or the long element is the most frequently occurring. It is obvious that 0 < σ∧

k < 1
2 for

each k ∈ N+.
We introduce an auxiliary function which counts for each digitization level k where k ∈ N+ all the previous levels

(i.e., levels with numbers 1 � i � k − 1) with digitization parameters fulfilling the condition σi < 1
2 :

Definition 3.5. For a given straight line l with equation y = ax , where 0 < a < 1 and a is irrational, we define
function Reg : N+ −→ N as follows:

Reg(k) =

⎧⎪⎨
⎪⎩

0 if k = 1
k−1∑
i=1

χ]
0, 1

2

[(σi ) if k ∈ N+
� {1},

where χ]
0, 1

2

[ is the characteristic function of the interval ]0, 1
2 [.

In order to make our central Definition 3.7 easier to construct and understand, we also formulate the following
lemma. The σ in the lemma works as a placeholder for the modified digitization parameters σ∧

k .

Lemma 3.6. If an irrational number σ fulfills 0 < σ < 1 and δ = frac( 1
σ
), then the value of � i

σ
� − � i−1

σ
� for natural

i � 2 is the following:

⌊
i
σ

⌋
−

⌊
i − 1

σ

⌋
=

⎧⎪⎪⎨
⎪⎪⎩

⌊
1
σ

⌋
+ χ]

0, 1
2

[(1 − δ) iff ∃ j ∈ N+ :
⌊

j−1
δ∧

⌋
+ 2 � i �

⌊
j

δ∧
⌋

⌊
1
σ

⌋
+ χ]

0, 1
2

[(δ) iff ∃ j ∈ N+ : i =
⌊

j
δ∧

⌋
+ 1.
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This lemma introduces a recursive definition of digitization runs on all the digitization levels (Definition 3.7).
It is worth mentioning that the lemma determines the values of � i

σ
� − � i−1

σ
� for all natural i � 2. For example we

get the value of � 2
σ
� − � 1

σ
� (i.e., i = 2) by taking j = 1. Then, for each j � 1, number � j

δ∧ � + 1 comes directly after
� j

δ∧ � (the last value of i in the first line), while the next one, � j
δ∧ �+2, we get for j +1 as the first value of i in the first

line. The lemma above thus implies that the values of � i
σ
�−� i−1

σ
� for i = 2, 3, . . . in this order are, if δ < 1

2 : � 1
δ∧ �−1

times � 1
σ
�, then one time � 1

σ
� + 1, then � 2

δ∧ � − � 1
δ∧ � − 1 times � 1

σ
�, then one time � 1

σ
� + 1, . . . , � j

δ∧ � − � j−1
δ∧ � − 1

times � 1
σ
�, then one time � 1

σ
� + 1, and so on. If δ > 1

2 , we only have to replace � 1
σ
� + 1 by � 1

σ
� and � 1

σ
� by � 1

σ
� + 1

in the above text.
Lemma 3.6 is a continuation of Lemma 3.1. Lemma 3.1 states that � i

σ
� − � i−1

σ
� for natural i � 2 can have one of

two values � 1
σ
� and � 1

σ
� + 1. Lemma 3.6 indicates exactly for which i we get each of the two values. It also shows

with which frequencies both values appear. The frequencies are δ for the value � 1
σ
� + 1 and 1 − δ for � 1

σ
�, where

δ = frac( 1
σ
) (see the discussion of Lemma 3.1). If δ < 1

2 , the value � 1
σ
� is the most frequent one; when δ > 1

2 the
most frequent one is � 1

σ
� + 1.

Because the phrase “the most frequent one” will become very important later in the text (see Proposition 3.12), we
will discuss this in depth now. First, the sets of indices in the first line of the formula in Lemma 3.6 are nonempty for
all j ∈ N+. More precisely, the sets of all consecutive indices i � 2 for which � i

σ
� − � i−1

σ
� = � 1

σ
� + χ]

0, 1
2

[(1 − δ)

has the cardinality � j
δ∧ � − � j−1

δ∧ � − 1 for j ∈ N+; thus, because 0 < δ∧ < 1 is irrational, Lemma 3.6 can also
be used for the calculation of these cardinalities and we get � 1

δ∧ � or � 1
δ∧ � − 1 consecutive indices i � 2 for which

� i
σ
� − � i−1

σ
� = � 1

σ
� + χ]

0, 1
2

[(1 − δ) for j ∈ N+. Because δ∧ < 1
2 , so � 1

δ∧ � � 2 and � 1
δ∧ � − 1 � 1 which gives

the nonemptiness. The formula also ensures that we get the value � 1
δ∧ � � 2 for some j � 2, namely for those j � 2

which are equal to � k
θ∧ � + 1 for some k ∈ N+ if θ < 1

2 and for those j � 2 which are not equal to � k
θ∧ � + 1 for any

k ∈ N+ if θ > 1
2 , where θ = frac( 1

δ∧ ). The phrase “the most frequent one” is thus well motivated.

Proof. Let 0 < σ < 1 be any irrational number. For any natural number i � 2 we have:⌊
i
σ

⌋
−

⌊
i − 1

σ

⌋
= 1

σ
+ frac

(
i − 1

σ

)
− frac

(
i
σ

)
.

As δ = frac( 1
σ
) and σ is irrational, so also δ is irrational and 0 < δ < 1. Because frac( i

σ
) = frac(i · frac( 1

σ
)) =

frac(iδ), we can proceed, using δ. Let us take any number j ∈ N+ and consider the following two cases:

(c.1.) a natural number i � 2 is such that (i − 1)δ and iδ have the same value of the floor function, equal to j − 1.
For those i we have:

frac
(

i − 1
σ

)
= (i − 1)δ − ( j − 1) and frac

(
i
σ

)
= iδ − ( j − 1),

so we get⌊
i
σ

⌋
−

⌊
i − 1

σ

⌋
= 1

σ
− frac

(
1
σ

)
=

⌊
1
σ

⌋
.

(c.2.) a natural number i � 2 is such that (i − 1)δ and iδ have different values of the floor functions, equal to j − 1
and j respectively (because 0 < δ < 1 and the integer parts of (i − 1)δ and iδ are different in this case, they
can only differ by 1). For those i we have:

frac
(

i − 1
σ

)
= (i − 1)δ − ( j − 1) and frac

(
i
σ

)
= iδ − j,

so we get⌊
i
σ

⌋
−

⌊
i − 1

σ

⌋
= 1

σ
+ 1 − frac

(
1
σ

)
=

⌊
1
σ

⌋
+ 1.

In order to prove the lemma for δ > 1
2 , we observe the following:
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Remark. Let δ ∈] 1
2 , 1[. For all j ∈ N+ and natural i > j :

[iδ < i − j ⇔ iδ∧ > j] and [iδ > i − j ⇔ iδ∧ < j].
To prove this it is enough to notice that δ∧ = 1 − δ for δ ∈] 1

2 , 1[.
Because δ∧ is irrational for all δ as described in the lemma, we have:

∃ j ∈ N+ :
⌊

j − 1
δ∧

⌋
+ 2 � i �

⌊
j

δ∧

⌋

⇔ ∃ j ∈ N+ : j − 1 < (i − 1)δ∧ < iδ∧ < j

(1)⇔

⎧⎪⎨
⎪⎩

∃ j ∈ N+ : j − 1 < (i − 1)δ < iδ < j if δ < 1
2

∃ j ∈ N+ : [i − j − 1 < (i − 1)δ < i − j
∧ i − j < iδ < i − j + 1] if δ > 1

2

⇔
{�iδ� = �(i − 1)δ� if δ < 1

2

�iδ� = �(i − 1)δ� + 1 if δ > 1
2

(2)⇔
⎧⎨
⎩

⌊ i
σ

⌋ −
⌊

i−1
σ

⌋
=

⌊
1
σ

⌋
if δ < 1

2⌊ i
σ

⌋ −
⌊

i−1
σ

⌋
=

⌊
1
σ

⌋
+ 1 if δ > 1

2

⇔
⌊

i
σ

⌋
−

⌊
i − 1

σ

⌋
=

⌊
1
σ

⌋
+ χ]

0, 1
2

[(1 − δ),

which proves the first statement in the lemma. Equivalence (1) we get using the above remark for δ > 1
2 , equivalence

(2) using (c.1.) and (c.2.). The fact that 0 < δ∧ < 1
2 (which means that 1

δ∧ > 2) ensures that the set of such i that
� j−1

δ∧ � + 2 � i � � j
δ∧ � is not empty for all j ∈ N+.

An analogous reasoning can be made for the second statement in the lemma:

∃ j ∈ N+ : i =
⌊

j
δ∧

⌋
+ 1

⇔ ∃ j ∈ N+ : [ j − 1 < (i − 1)δ∧ < j ∧ j < iδ∧ < j + 1]

⇔

⎧⎪⎨
⎪⎩

∃ j ∈ N+ : [ j − 1 < (i − 1)δ < j
∧ j < iδ < j + 1] if δ < 1

2

∃ j ∈ N+ : i − j − 1 < (i − 1)δ < iδ < i − j if δ > 1
2

⇔
{�iδ� = �(i − 1)δ� + 1 if δ < 1

2

�iδ� = �(i − 1)δ� if δ > 1
2

⇔
⎧⎨
⎩

⌊ i
σ

⌋ −
⌊

i−1
σ

⌋
=

⌊
1
σ

⌋
+ 1 if δ < 1

2⌊ i
σ

⌋ −
⌊

i−1
σ

⌋
=

⌊
1
σ

⌋
if δ > 1

2

⇔
⌊

i
σ

⌋
−

⌊
i − 1

σ

⌋
=

⌊
1
σ

⌋
+ χ]

0, 1
2

[(δ).
The lemma is proved. �
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The next definition is the basis for the theorem describing digital straight lines with irrational slope:

Definition 3.7. For a given straight line l with equation y = ax , where 0 < a < 1 and a is irrational, we define the
following functions:

• run1 : N+ → P(N+), defined as follows:

run1( j) = {i; � j−1
a � + 1 � i � � j

a �} for j ∈ N+.

• For k ∈ N+
� {1} : runk : N+ → P(runk−1(N

+)) defined as follows:

runk(1) = {runk−1(i); 1 � i � � 1
σ∧

k−1
� + Rmod2(k)}, and for natural j � 2:

runk( j) = {runk−1(i); � j−1
σ∧

k−1
� + Rmod2(k) + 1 � i � � j

σ∧
k−1

� + Rmod2(k)}, where

Rmod2(k) =
{

0 if Reg(k) is even
1 if Reg(k) is odd,

σ∧
k are the modified digitization parameters defined in Definition 3.4, the function Reg is defined in

Definition 3.5, and P(A) denotes the power set of a set A.

We shall say that runk( j) for k, j ∈ N+ is a run of digitization level k. We will also write runk or in plural runsk ,
meaning runk( j) for some j ∈ N+, or, respectively, {runk(i); i ∈ I } where I ∈ P(N+). Also here we define the
length of a digitization run as its cardinality.

From the definition of run1 it is clear that runs1 can be identified with digitization runs described in the beginning
of this section, because for j ∈ N+ (according to Proposition 3.2):

run1( j) =
{

i ∈ N+;
⌊

j − 1
a

⌋
+ 1 � i �

⌊
j
a

⌋}
= {i ∈ N+; j − 1 < ai � j}
= {i ∈ N+; (i, j) ∈ DR′(l)},

while

run( j) = {(i, j) ∈ (N+)2; (i, j) ∈ DR′(l)}.
Proposition 3.8. Let l be given by the equation y = ax where 0 < a < 1 and a is irrational. For each k ∈ N+

� {1},
the runs of the level k can have one of the two lengths: � 1

σ∧
k−1

� (short runs) or � 1
σ∧

k−1
�+ 1 (long runs). The runs of level

1 can have lengths � 1
a � or � 1

a � + 1.

Proof. For level k where k ∈ N+
� {1} the length of runk(1) is equal to � 1

σ∧
k−1

� if Rmod2(k) = 0 and � 1
σ∧

k−1
� + 1 if

Rmod2(k) = 1. If j � 2 is a natural number, then the length of runk( j) is equal to � j
σ∧

k−1
� − � j−1

σ∧
k−1

� and, because

0 < σ∧
i < 1 for i ∈ N+, we can apply Lemma 3.6 with σ = σ∧

k−1 for k = 2, 3, . . . . For k = 1 we apply Lemma 3.6
with σ = a. �

Lemma 3.6 and Proposition 3.8 allow us to formulate the following definitions:

Definition 3.9. For a given straight line l with equation y = ax , where 0 < a < 1 and a is irrational, we define the
following functions for k ∈ N+:

kind runk : N+ → {S, L},
where ‘S’ and ‘L’ are abbreviations for short and long respectively. For j ∈ N+:

kind run1( j) =
{

S if card(run1( j)) = � 1
a �

L if card(run1( j)) = � 1
a � + 1
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kind runk( j) =
⎧⎨
⎩

S if card(runk( j)) = � 1
σ∧

k−1
�

L if card(runk( j)) = � 1
σ∧

k−1
� + 1

for k ∈ N+
� {1},

where card(runk( j)) denotes the number of elements in runk( j) (the length of runk( j)).

Definition 3.10. For a given straight line l with equation y = ax , where 0 < a < 1 and a is irrational, we define the
alternation-function

alt : {S, L} → {S, L}
as follows:

alt(S) = L , alt(L) = S.

We define three functions with level numbers as arguments:

Definition 3.11. For a given straight line l with equation y = ax , where 0 < a < 1 is irrational, we define three
functions:

single(.), main(.), first(.) : N+ → {S, L}.
For k ∈ N+:

singlek =
{

S if { j ∈ N+; kind runk( j) = kind runk( j + 1) = S} = ∅
L if { j ∈ N+; kind runk( j) = kind runk( j + 1) = L} = ∅

maink = alt ◦ singlek
firstk = kind runk(1).

We remark that the kth digitization parameter defined in Definition 3.4 has the following influence on the most
frequent (main) run length on level k:

Proposition 3.12. For a digital line y = ax, where 0 < a < 1 and a is irrational, we have on level k where k ∈ N+:

• σk < 1
2 ⇒ maink = S,

• σk > 1
2 ⇒ maink = L.

Proof. Combine Proposition 3.8 with the discussion after the statement of Lemma 3.6. �

This brings us to the following theorem:

Theorem 3.13 (Necessary Condition to be a Digital Line with Irrational Slope). For a given straight line l with
equation y = ax, where 0 < a < 1 and a is irrational, the R′-digitization of the positive half line of l is the
following subset of Z2:

DR′(l) =
⋃

j∈N+
{run1( j) × { j}}.

For each k ∈ N+ runs of level k defined in Definition 3.7 fulfill the following conditions:

[N1]: There are only two possible run-lengths on level k. They are expressed by two consecutive natural numbers. The
length of runk( j) for j ∈ N+

�{1} is namely � 1
σ∧

k−1
� (� 1

a � if k = 1) or � 1
σ∧

k−1
�+1 (� 1

a �+1 if k = 1), where σ∧
k is

the modified digitization parameter defined in Definition 3.4. We write kind runk( j) = S or kind runk( j) = L
respectively. S and L are abbreviations of short and long respectively.

[N2]: kind runk(� j
σ∧

k
� + 1) = singlek for all j ∈ N+ and kind runk(i) = maink for all natural i � 2 such that

i �= � j
σ∧

k
� + 1 for all j ∈ N+. singlek means the kind of runk which can never appear more than once in a

sequence and maink means the kind of runk which comes in multiples.
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[N3]: The kind of the first run of level k is determined by the following formula:

firstk = kind runk(1) =
{

S if Reg(k) is even
L if Reg(k) is odd ,

where the function Reg is defined in Definition 3.5.

Proof. Let us first consider the case k = 1. Because runs1 can be identified with digitization runs described in the
beginning of this section, Proposition 3.2 and Lemma 3.6 with σ = a prove the conditions [N1], [N2] and [N3] for
level 1.

The case k > 1 remains to be considered. From Definition 3.4 follows that we can apply Lemma 3.6 to σ = σ∧
k−1

(so δ = σk) for k = 2, 3, . . . . This lemma proves by simple induction the conditions [N1] and [N2], because runsk−1
are the elements of runsk .

It remains to prove the condition [N3]. First we assume that for the digitization parameters of the line to digitize
the following holds: σk < 1

2 for all k ∈ N+ and we prove the condition [N3] for lines like this. If j ∈ N+, runsk(i)
(i � 2) belonging to the runk+1( j) are short (i.e., have length � 1

σk−1
�) if and only if⌊

j − 1
σk

⌋
+ 2 � i �

⌊
j

σk

⌋
.

(Lemma 3.6 with σ = σk−1), so the runk+1( j) consists of � j
σk

�−� j−1
σk

�−1 short runsk and one long, runk(� j−1
σk

�+1)

or runk(� j
σk

�+1). In particular, for j = 1 we get that runk+1(1) consists of � 1
σk

�−1 short runsk (numbers 2, . . . , � 1
σk

�)

and we know (Lemma 3.6) that runk(� 1
σk

� + 1) is long, so runk+1(1) is:

• short if runk(1) is long,
• long if runk(1) is short.

Because the first run of level 1 (first1) is always short, we get by simple induction the following statement for lines
with all digitization parameters less than 1

2 . For k ∈ N+:

firstk =
{

S if k is odd
L if k is even.

We can also say that for the lines as described above: the kind of the first run is alternating for consecutive levels. From
Definition 3.5 it follows that for lines with all the digitization parameters σ1, σ2, . . . less than 1

2 we have Reg(k) = k−1
for k ∈ N+, thus its value is odd for even k and even for odd k. This shows that the statement above is equivalent to the
condition [N3] for lines with σk < 1

2 for all k ∈ N+ and the proof of the theorem for this type of line is complete. If
σk > 1

2 for some k ∈ N+ then we get by the same reasoning as above (Lemma 3.6 with σ = a if k = 1 and σ = σ∧
k−1

if k > 1, thus δ = σk and 1 − δ = σ∧
k ) that runk+1(1) consists of � 1

σ∧
k

� − 1 long runsk (numbers 2, . . . , � 1
σ∧

k
�) and we

know (also Lemma 3.6) that runk(� 1
σ∧

k
� + 1) is short, so runk+1(1) is:

• long if runk(1) is long,
• short if runk(1) is short

and the alternation pattern breaks. We get no alternation of the kind of the first run from level k to level k+1 if σk > 1
2 ,

and a simple induction proof gives us the following recurrent description of the kind of the first run on each level:

• first1 = S,
• For each natural k � 2: if σk−1 < 1

2 , then firstk = alt ◦ firstk−1 (where alt(S) = L and alt(L) = S according to
Definition 3.10),

• For each natural k � 2: if σk−1 > 1
2 , then firstk = firstk−1,

which, according to Definition 3.5, leads to the condition [N3] in Theorem 3.13. The proof is now complete. �

Generally speaking, we have two important questions in connection with digital lines:
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• how to find the digitization of a given real line (necessary condition to be a digital line)
• how to recognize a digital line in a subset of Z2 (sufficient condition to be a digital line).

To give a simple answer to the first question, we will reformulate the results from Theorem 3.13 in a more practically
useful way. To do this, we will use function Reg to describe the form of runs on each digitization level. The form of
runs on level k + 1 depends on both main (thus on σk in a very explicit way) and first on level k (the first on level k
for k � 2 is fully determined only by the digitization parameters σ1, . . . , σk−1. They show where the kind of the first
run alternates from one level to the next level and where not).
It can be convenient to use the symbols S · · · SL , L S · · · S, L · · · L S and SL · · · L when describing the form of
digitization runs. For example S · · · SL will mean that the runk we are talking about consists of

⌊
1/σ∧

k−1
⌋ − 1 or⌊

1/σ∧
k−1

⌋
short runsk−1 (abbrev. S) and one long runk−1 (abbrev. L) in this order, so it is a run with main element

short.

Corollary 3.14 (Necessary Condition to be a Digital Line with Irrational Slope). For a straight line l with equation
y = ax, where 0 < a < 1 and a is irrational, we have: for each j ∈ N+, run1( j) can have two possible lengths: � 1

a �
(S — short) and � 1

a � + 1 (L — long) and the forms of runsk+1 (form runk+1) for k ∈ N+ are as follows:

form runk+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S · · · SL iff Reg(k + 1) = Reg(k) + 1, Reg(k) is even

SL · · · L iff Reg(k + 1) = Reg(k), Reg(k) is even

L S · · · S iff Reg(k + 1) = Reg(k) + 1, Reg(k) is odd

L · · · L S iff Reg(k + 1) = Reg(k), Reg(k) is odd ,

where S means runk with length � 1
σ∧

k−1
� and L means runk with length � 1

σ∧
k−1

� + 1 and the function Reg is defined in

Definition 3.5.

Proof. This corollary follows from Definition 3.7 and Theorem 3.13. We have two implications: σk < 1
2 ⇒

maink = S and σk > 1
2 ⇒ maink = L (Proposition 3.12). The parity of Reg(k) determines the first run of level k

(firstk is short if Reg(k) is even and long if Reg(k) odd — Condition [N3]).
The reasoning of the proof is illustrated in the following table; the assumptions are in the first two columns, and

the conclusions, which are based on the above statements, are in the three last columns:

σk Reg(k) maink firstk form of runk+1

< 1
2 even S S S · · · SL , � 1

σk
� − 1 or � 1

σk
� times ‘S’

> 1
2 even L S SL · · · L , � 1

1−σk
� − 1 or � 1

1−σk
� times ‘L’

< 1
2 odd S L L S · · · S, � 1

σk
� − 1 or � 1

σk
� times ‘S’

> 1
2 odd L L L · · · L S, � 1

1−σk
� − 1 or � 1

1−σk
� times ‘L’

The relation of the parities of Reg(k) and Reg(k + 1) determines the main of level k:

• if Reg(k + 1) and Reg(k) have the same parities, then χ]
0, 1

2

[(σk) = 0, so σk > 1
2 and main of level k is long.

• if Reg(k + 1) and Reg(k) have different parities, then χ]
0, 1

2

[(σk) = 1, so σk < 1
2 and main of level k is short.

Because runsk are elements of the runsk+1, the conclusion about the form of the runs of level k + 1 follows from the
information above. �

The corollary is constructive. It shows exactly how to find the R′-digitization of the positive half line y = ax (where
0 < a < 1 and a is irrational). We get the digitization by calculating the digitization parameters and proceeding step
by step, following the recursive description. The knowledge about the kind of the first run on each level allows us go
as far as we want in the digitization.

Corollary 3.14 shows a necessary condition for a subset of (N+)2 to be a digital (half) line. Now the question
remains whether the condition is also sufficient. We can ask ourselves whether all the subsets of (N+)2 fulfilling on
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all levels the three conditions named in Theorem 3.13 and with the short run length on level k equal to nk � 2 are
digitizations of some (half) lines with irrational slope. In other words: can all the sequences of natural numbers greater
or equal to 2 be the short run lengths for some line? Run length 1 on level with number greater than 1 is only possible
for lines with rational slope, where we get periodical digitization, so there is only one kind of run on some level k,
where k ∈ N+ depends on the slope. If the slope is irrational, we can only have short run length 1 on level 1, i.e., only
short run1 can have length 1.

Lemma 3.15. For each k ∈ N+:

• For each 0 < r < 1 it is possible to find a real straight line with level k parameter σk = r .
• If k � 2: for each 0 < r < 1 and each set {i1, . . . , il} ⊂ {1, . . . , k −1} with cardinality 1 � l � k −1 it is possible

to find a real straight line with the level k parameter σk = r and such that σi > 1
2 for all i ∈ {i1, . . . , il}.

Proof. We construct the slope of the line y = ax fulfilling this condition as follows:

• In the first case we take a = [0, n1, . . . , nk−1, [nk, r ]], where n1 � 1 and ni � 2 for i � 2 are natural
numbers. [0, n1, . . . , nk−1, [nk, r ]] is a compact abbreviated form of the continued fraction (see Hardy and Wright
[3, p. 130].):

1

n1 + 1
n2+···+ 1

nk−1+ 1
nk+r

.

Then ni = � 1
σi−1

� for i = 2, . . . , k is the length of short runi and n1 = � 1
a � is the length of short run1. All the

straight lines with the slopes a like above fulfill the imposed condition. In each case we have σk = frac(nk +r) = r .
The restriction ni � 2 for i � 2 ensures that all the σi for i = 1, . . . , k − 1 are less than 1

2 , so we never have to
modify the digitization parameters according to Definition 3.4, and we really get σk = frac(nk + r) = r .

• In the second case we do similarly as in the proof of the first part of the lemma. If we wish to have σi > 1
2 , then

we put 1 twice in place of ni+1 in the continued fraction, i.e., we replace

[0, n1, . . . , ni , ni+1, ni+2, . . . , nk−1, [nk, r ]]
by

[0, n1, . . . , ni , 1, ni+1 − 1, ni+2, . . . , nk−1, [nk, r ]].
In other words, we put

1 + 1
ni+1 − 1 + · · ·

in the continued fraction in place of ‘ni+1+’. We can repeat this on each of the levels with numbers i ∈
{i1, . . . , il} ⊂ {1, . . . , k − 1}. Each digitization level i with σi > 1

2 causes increasing (by one) of the number
of levels (literally) in the continued fraction which is going to be the slope. The construction of the slope is based
purely on Definition 3.4.

The proof is now complete. �

This leads to the following theorem:

Theorem 3.16. Let n ∈ N+. For each sequence of natural numbers (k1, k2, . . . , kn) such that k1 � 1 and ki > 1 for
1 < i � n there exist m lines y = ax with rational slopes, where

m =
{

2n−1 if kn �= 2
2n−2 if kn = 2

and their digitization fulfills the following conditions: for i = 1, . . . , n the short run’s length on digitization level i
is ki .
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Proof. For a sequence (k1, k2, . . . , kn) fulfilling the assumptions named in the theorem, we define the slopes of
the lines as follows: a = [0, k1, . . . , kn] (continued fraction [0, k1, . . . , kn−1, [kn, 0]] as defined in the proof of
Lemma 3.15) if we want all the σ j < 1

2 for j = 1, . . . , n − 1. If we want σi > 1
2 for some 1 � i � n − 1, we

take a = [0, k1, . . . , ki , 1, 1, ki+2, . . . , kn]. We have to make a decision about σi < 1
2 or σi > 1

2 for i = 1, . . . , n − 1,

which means in n − 1 places. This gives us 2n−1 possibilities. We have σn−1 = 1
kn

, so, if kn = 2, then σn−1 = 1
2 and

we have one place less to make a choice, so we have only 2n−2 possibilities. It follows from Theorem 3.13 that lines
with those slopes fulfill the desired condition about the short runs’ lengths. �

Theorem 3.16 states that all sequences of natural numbers greater or equal to 2 (and the first element possibly
equal to 1) generate the digitization of some lines with short runs’ lengths on each level defined by the elements of
the sequence. This means that each construction of pixels as described in Theorem 3.13, with infinitely many (n was
arbitrary!) digitization levels is the R′-digitization of the positive half line of some line y = ax , where 0 < a < 1
is irrational. This gives the following theorem, which states that the necessary condition for being a digital line with
irrational slope 0 < a < 1 is also sufficient:

Theorem 3.17 (Sufficient Condition to be a Digital Line with Irrational Slope). Each subset of (N+)2 containing
(1, 1) and fulfilling the conditions [N1], [N2] and [N3] on all the levels is the R′-digitization of the positive half
line of some line y = ax, where 0 < a < 1 and a is irrational.

Continued fractions have already been used in this context; Rosenfeld and Klette indicate in their paper two
independent publications from 1991: one by M. Bruckstein and another one by K. Voss; see Rosenfeld and Klette [9].

4. Conclusions

We have formulated a formal definition of digitization runs and theorems containing necessary and sufficient
conditions for subsets of (N+)2 being the digitization of a straight (half) line with irrational slope passing through
the origin. Only methods of elementary mathematics have been applied. The main topic of interest was Theorem 3.13
with the necessary condition. The restrictions put on the line (irrational slope 0 < a < 1 and digitization of the
positive half line only) are not severe restrictions. It is not difficult to expand the theory to the cases not explicitly
covered in this paper. The developed and proved theory can be used in the research into the theory of digital lines,
their symmetries, translations, etc.
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We study relations between digital lines and continued fractions. The main result is a parsimonious

description of the construction of the digital line based only on the elements of the continued fraction

representing its slope and containing only simple integer computations. The description reflects the

hierarchy of digitization runs, which raises the possibility of dividing digital lines into equivalence classes

depending on the continued fraction expansions of their slopes. Our work is confined to irrational slopes

since, to our knowledge, there exists no run-hierarchical and continued fraction based description for

these, in contrast to rational slopes which have been extensively examined. The description is exact (it

does not use approximations by rationals). Examples of lines with irrational slopes and with very simple

digitization patterns are presented. These include both slopes with periodic and non-periodic continued

fraction expansions, i.e. both quadratic surds and other irrationals. We also derive the connection between

the Gauss map and the digitization parameters introduced by the author in 2007.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The aim of the present paper is to solve the following problem:

given the continued fraction (CF) expansion of a positive irrational

number a less than 1, how is the digitization of the line y = ax
constructed? The description uses only the elements of the CF and

is exact, i.e. does not use the commonly applied approximations by

rationals. The method is based on simple integer computations that

can be easily applied to computer programming.

This description forms the main result (Theorem 11; description

by CFs). The theoretical basis for this article is [1] by Uscka-Wehlou.

The main result there is recalled in Section 2 of the present paper

(Theorem 4; description by the �-parameters). It gives a description

of digitization runs on all digitization levels for lines y = ax where

a ∈]0, 1[\Q , which is based on digitization parameters defined in

Definition 1 and the function Rega defined in Definition 2.

Although Theorem 4 looks similar to Theorem 11, the former

involves computations on irrational numbers, which is not the case

in the latter.

In our CF description, like in all the other CF descriptions, we

replace the heavy computations (involved, in our case, in the method
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by digitization parameters) by simple computations on integers. In

order to do that, the digitization parameters and the function Rega for

each a ∈]0, 1[\Q were expressed by the elements of the CF expansion

of a. The key role in this transform is played by the index jump

function (Definition 7).

The computations on irrationals did not disappear during the

translation of Theorem 4 into the CF version (Theorem 11). They

were moved into the process of finding the CF expansion of the

slope. For some slopes we are able to compute the CF expansions

exactly, using mathematical methods; some examples will be shown

in Section 4, for both algebraic and transcendental numbers. For

other slopes we can use algorithms for finding CF expansions. In

Section 4.2.2 we show some possibilities of applying our method for

digital rotations.

The main work leading to the successful translation of

Theorem 4 into the CF description (Theorem 11) has been done in

Theorems 9 and 10. The first one expresses the digitization param-

eters in terms of CFs and the second one does the same with the

function Rega. These results allowed us to replace the computa-

tionally challenging conditions and formulae for run lengths from

Theorem 4 by equivalent conditions and formulae based on the

elements of the CF expansion of a.
In general, it is hard to perform arithmetical operations on CFs

(e.g. addition and multiplication of CFs); see Khinchin [2, p. 20].

However, Definition 1 and Theorem 4 involve only the operations

which form an exception to this rule. These operations are finding

the integer (fractional) part of the inverse to a CF and subtracting a CF
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from 1. The formula for the last operation is described in Lemmas 5

and 6, the others are clearly easy to perform. This made it possible

to find the simple description formulated in Theorem 11.

The present CF description of digital lines is similar to the for-

mula of Markov and Venkov [3, p. 67], but since their method was

not meant for descriptions of digital lines, it does not reflect the

hierarchical structure of digitization runs on all levels, which our

method does. This permits the grouping of digital lines into classes

according to properties defined by the elements of the CF expan-

sions of the slopes, which has been presented in the author's submit-

ted manuscript [4]. In Section 5 we derive the connection between

the iterates of the Gauss map for a given a ∈]0, 1[\Q and the dig-

itization parameters associated with a as introduced by the author

in [1].

The method presented here is computationally simple, involving

only easy computations with integers, excepting the algorithm for

determining the CF expansion of the slope. The method applies to

irrational slopes and gives the exact results instead of approxima-

tions by rationals. To the author's knowledge, there are no previous

descriptions of digital lines with irrational slopes fulfilling all the

criteria just mentioned, and reflecting the hierarchy of runs.

Earlier developments: The use of CFs in modelling digital lines

was discussed by Brons [5] as early as in 1974. Already then it

was clear that the patterns generated in the digitization process

of straight lines were related to the CF expansions of the slopes.

However, the algorithm provided by Brons is only valid for rational

slopes.

Some other researchers describing the construction of digital lines

with rational slopes in terms of CFs were Reveillès [6], Voss [7, pp.

153–157]—the splitting formula, Troesch [8]—Euclid's algorithm and

digitization runs, Debled [9, pp. 59–66]—description by the Stern-

Brocot tree, Stephenson [10]—an algorithmic solution, de Vieilleville

and Lachaud [11]—a combinatoric approach. See also the review of

Klette and Rosenfeld from 2004 [12].

Irrational numbers have been less central in research on digital

line construction, possibly because irrational slopes must appear not

to have direct applications for computer graphics. A CF description

of digital lines was presented by Dorst and Duin [13]. Although their

solution can be applied to irrational slopes, it is formulated as an

algorithm. Since it is not a mathematical theorem, it will not result in

descriptions of digital lines as mathematical objects, or help research

on their abstract properties.

L.D. Wu formulated in 1982 a theorem describing digital straight-

ness. Proofs of this theorem based on CFs were published in 1991

independently by Bruckstein and Voss; see Klette and Rosenfeld [12,

pp. 208–209]. Bruckstein [14] described digital straightness by a

number of transformations preserving it. Some of these transforma-

tions were defined by means of CFs.

Some work on the subject has also been done outside digital

geometry and computer graphics, however, the solutions obtained

in other fields do not reflect the hierarchical structure of digitization

runs, which is an important feature of digital lines as mathematical

objects.

For example, as far back as in 1772, astronomer Johan III Bernoulli

applied the CF expansion of a to the solution of the problem of

describing the sequence (�na�)n∈N+ for an irrational a. The problem

is clearly equivalent to finding the digitization of y = ax. Bernoulli
failed to provide any proofs. Venkov catalogued the entire history of

the problem and its solution (including the solution by Markov from

1882) in [3, pp. 65–71].

Stolarsky described in [15] applications of CFs to Beatty sequences.

Last but not least, we have to mention the research on Sturmian

words, because this is very closely related to the research on dig-

ital lines with irrational slopes; see chapter 2 in Lothaire [16] (by

J. Berstel and P. Séébold).

2. Description of digital lines by the digitization parameters

To give the necessary background to the present results, we recall

that arithmetical description of the modified Rosenfeld digitization

(R′-digitization) of the positive half line y = ax for a ∈]0, 1[\Q as a

subset of Z2 is the following: DR′ (y = ax, x>0) = {(k, �ak�); k ∈ N+}.
The R′-digitization of y = ax was obtained in [1] using the following

digitization parameters.

Definition 1. For y=ax, where a ∈]0, 1[\Q , the digitization parameters

are �1=frac(1/a), and, for all natural numbers k>1 �k=frac(1/�∧
k−1

),

where �∧
k−1

= min(�k−1, 1 − �k−1) ∈]0, 12 [\Q .

For j ∈ N+,�j and �∧
j are the digitization parameters and modified

digitization parameters of the digitization level j, respectively.

For each a ∈]0, 1[\Q , an auxiliary function Rega was introduced.

This function gives for each k�2 the number of all the digitization

levels i, where 1� i�k − 1, with digitization parameters fulfilling

the condition �i < 1
2 .

Definition 2. For a given line with equation y=ax, where a ∈]0, 1[\Q ,

we define a function Rega : N+ −→ N as follows: Rega(1) = 0 and

Rega(k) = ∑k−1
i=1 �]0,1/2[(�i) if k ∈ N+\{1}, where �]0,1/2[ is the charac-

teristic function of the interval ]0, 12 [.

The digitization runs of level k for k ∈ N+ were defined recursively

as sets of runs of level k − 1 (if we define integer numbers as runs

of level 0).

Definition 3 (Definition 3.7 from [1]). For a given straight line with

equation y=ax, where a ∈]0, 1[\Q , we define the following functions:

• run1 : N+ → P(N+), defined as follows:

run1(j) = {i; �(j − 1)/a� + 1� i��j/a�} for j ∈ N+.
• For k ∈ N+\{1} : runk : N+ → P(runk−1

(N+)) defined as follows:

runk(1) = {runk−1
(i); 1� i��1/�∧

k−1
� + Rmod2(k)}, and for natural

j�2: runk(j) = {runk−1
(i);

�(j − 1)/�∧
k−1

� + Rmod2(k) + 1� i��j/�∧
k−1

� + Rmod2(k)}, where

Rmod2(k)=0 if Rega(k) is even and Rmod2(k)=1 if Rega(k) is odd;
�∧
k are the modified digitization parameters defined in Definition

1, Rega is defined in Definition 2 and P(A) denotes the power set

of a set A.

We call runk(j) for k, j ∈ N+ a run of digitization level k. We use

notation runk or in plural runsk, meaning runk(j) for some j ∈ N+,
or, respectively, {runk(i); i ∈ I} where I ∈ P(N+). The length of a

digitization run is defined as its cardinality.

Function Rega defined in Definition 2 was very important in

the description of the form of runs. It helped to recognize which

kind of runs was the most frequent (also called main) on each

level and which kind of runs was first, i.e., beginning in (1,1).

The digitization runs were defined in Definition 3.7 of [1] such

that a run of digitization level k is a set of consecutive runs of

level k − 1 composed of one single digitization runk−1
and a se-

quence of main digitization runsk−1
and which is maximal for

inclusion.

We showed that for a given straight line l with equation y = ax,
where a ∈]0, 1[\Q , the R′-digitization of the positive half line of l is
the following subset of Z2: DR′ (l) = ⋃

j∈N+ {run1(j) × {j}}.
The main theorem of [1] was a formalization of the well-known

conditions the digitization runs fulfil. On each level k for k�1

we have short runs Sk and long runs Lk, which are composed of
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the runs of level k − 1. Only one type of the runs (short or long)

on each level can appear in sequences, the second type always

occurs alone. In the present paper we will use the notation Smk Lk,
LkS

m
k , L

m
k Sk and SkL

m
k , where m = �1/�∧

k � − 1 or m = �1/�∧
k �, when

describing the form of digitization runsk+1
. For example, Smk Lk

means that the runk+1
we are talking about consists of m short

runsk (abbreviated Sk) and one long runk (abbreviated Lk) in this

order, so it is a runk+1
with the most frequent element short. The

length of such a runk+1
, being its cardinality, i.e., the number of

runsk contained in it, is then equal to m + 1. We will also use the

notation ‖Sk+1‖ and ‖Lk+1‖ for the length of the short resp. long

runsk+1
.

We will use the following reformulation of the main result from

[1]

Theorem 4 (Main Result in [1]; description by (�k)k∈N+ ). For a straight

line with equation y=ax,where a ∈]0, 1[\Q ,we have ‖S1‖=�1/a�, ‖L1‖=
�1/a� + 1, and the forms of runsk+1

(form_runk+1
) for k ∈ N+ are as

follows:

form_runk+1

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Smk Lk if Rega(k + 1) = Rega(k) + 1 and Rega(k) is even,

SkL
m
k if Rega(k + 1) = Rega(k) and Rega(k) is even,

LkS
m
k if Rega(k + 1) = Rega(k) + 1 and Rega(k) is odd,

Lmk Sk if Rega(k + 1) = Rega(k) and Rega(k) is odd,

wherem=�1/�∧
k �−1 if the runk+1

is short andm=�1/�∧
k � if the runk+1

is long. The function Rega is defined in Definition 2, and �k for k ∈ N+

in Definition 1.

Theorem 4 shows exactly how to find the R′-digitization of

the positive half line y = ax for a ∈]0, 1[\Q . We get the digiti-

zation by calculating the digitization parameters and proceed-

ing step by step, recursively. The knowledge about the kind of

the first run on each level allows us go as far as we want in

the digitization. The only problem was in the heavy computa-

tion of the digitization parameters, but this will be solved now,

in Section 3.

3. Main result: description of digital lines by CFs

Before presenting the description of the digitization, we provide

a brief introduction on CFs. The following algorithm gives the regular

(or simple) CF for a ∈ R\Q , which we denote by [a0; a1, a2, a3, . . .]. We

define a sequence of integers (an) and a sequence of real numbers

(�n) by �0 = a; an = ��n� and �n = an + 1/(�n+1) for n�0. Then an�1

and �n >1 for n�1. The integers a0, a1, a2, . . . are called the elements

of the CF (or terms, or partial quotients). We use the word elements,

following Khinchin [2]. Because a is irrational, so is each �n, and the

sequences (an) and (�n) are infinite. A CF expansion exists and is

unique for all a ∈ R\Q ; see [2, p. 16]. The following lemmas concern

subtracting CFs from 1.

Lemma 5. Let bi ∈ N+ for all i ∈ N+ and b1�2. Then

1 − [0; b1, b2, b3, . . .] = [0; 1, b1 − 1, b2, b3, . . .]. (1)

Fig. 1. The index jump function, digitization parameters and hierarchy of runs.

Proof. Let b = [0; b1, b2, . . .] and b1�2. Then 1/b = [b1; b2, . . .] and

we get

1 − b = 1

1

1 − b

= 1

1 + b
1 − b

= 1

1 + 1

1

b
− 1

= 1

1 + 1

[b1; b2, b3, . . .] − 1

= [0; 1, b1 − 1, b2, . . .]. �

Lemma 6. If ai ∈ N+ for all i>1, then we have 1 − [0; 1, a2, a3, . . .] =
[0; a2 + 1, a3, . . .].

Proof. Put b1 − 1 = a2, b2 = a3, b3 = a4, . . . , bi = ai+1, . . . in Lemma 5.

�

Because clearly [0; 1, a2, a3, . . .]> 1
2 for all sequences (a2, a3, . . .) of

positive integers, Lemma 6 illustrates the modification operation for

the �-parameters according to Definition 1. This leads us to define

the following index jump function, which will allow us to describe

the digitization in terms of CFs.

Definition 7. For each a ∈]0, 1[\Q , the index jump function

ia : N+ → N+ is defined by ia(1) = 1, ia(2) = 2 and ia(k + 1) = ia(k) +
1 + �1(aia(k)) for k�2, where �1(x) = 1 for x = 1, �1(x) = 0 for x�1,

and a1, a2, . . . ∈ N+ are the CF elements of a.

The index jump function is a renumbering which avoids elements

following directly after some 1s in the CF expansion (in particular,

it avoids every second element in the sequences of consecutive 1s

with index greater than 1). We will illustrate how it works with the

following example.

Example 8. Let us consider the slopes with the first CF elements as

in Fig. 1. We present an illustration of the forming of the index jump

function for those slopes. If a = [0; 1, 2, 1, 1, 3, 1, 1, a8, a9, 1, a11, a12,
1, 1, 1, a16, a17, . . .], where ak is greater than 1 for k=8, 9, 11, 12, 16, 17,

then the index jump function ia is formed as follows:
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In the last row we presented the first 12 elements of the se-

quence of the values of the index jump function for these a,
that is (ia(k))1� k�12. The underlined 1s are essential for the

construction of the digital line y = ax (this will be explained

later). The sequence of the run length on all the digitization

levels (as will be defined in Theorem 11) for these slopes is

(bn)n∈N+ = (1, 2, 1+1, 3, 1+1, a8, a9, 1+ a11, a12, 1+1, 1+ a16, a17, . . .).

The following theorem translates Definition 1 into the language

of CFs. It is a very important step on the way of translating our

earlier results into a simple CF description. This will also allow us to

examine the connection between the sequence of the consecutive

digitization parameters for given a ∈]0, 1[\Q and the iterates of the

Gauss map G(a) = frac(1/a), as will be shown in Section 5.

Theorem9. Let a ∈]0, 1[\Q and a=[0; a1, a2, . . .]. For the digital straight
line with equation y = ax, the digitization parameters as defined in

Definition 1 are

�k = [0; aia(k+1), aia(k+1)+1, . . .] for k�1, (2)

where ia is the index jump function defined in Definition 7.

Proof. By induction. For k = 1, the statement is �1 = [0; a2, a3, . . .],
because ia(2) = 2. From Definition 1 and because a = [0; a1, a2, . . .],
we have �1 = frac(1/a) = [0; a2, a3, . . .], so the induction hy-

pothesis for k = 1 is true. Let us now suppose that �k =
[0; aia(k+1), aia(k+1)+1, . . .] for some k�1. We will show that this

implies that �k+1 = [0; aia(k+2), aia(k+2)+1, . . .]. From Definition 7

we have ia(k + 2) = ia(k + 1) + 1 + �1(aia(k+1)). According to

Definition 1, �k+1 = frac(1/�∧
k ). We get two cases:

• aia(k+1) �1 (thus �1(aia(k+1))=0). This means that �k < 1
2 , so �∧

k =�k.

We get the statement, because �k+1=frac(1/�k)=[0; aia(k+1)+1, . . .]=
[0; aia(k+2), . . .].

• aia(k+1) = 1 (thus �1(aia(k+1)) = 1). This means that �k > 1
2 , so �∧

k =
1 − �k. Lemma 6 and Definition 7 give us the statement, because

�k+1 = frac (1/(1 − �k)) = [0; aia(k+1)+2, . . .] = [0; aia(k+2), . . .].

This completes the proof. �

In order to get a CF description of the digitization, we will express

the function Rega (determining the form of the digitization runs

on all the levels) using the function ia defined in Definition 7. The

translation of Definition 2 into the following CF version results in

a very simple relationship between the complicated Rega and the

simple ia. It is a very important step in translating Theorem 4 into a

CF version.

Theorem 10. For a given a ∈]0, 1[\Q , there is the following connection

between the corresponding functions Rega and ia. For each k ∈ N+

Rega(k) = 2k − ia(k + 1). (3)

Proof. For k=1 a direct check gives the equality. Let us assume that

Rega(k)=2k− ia(k+1) for some k�1. We will show that this implies

Rega(k + 1) = 2k + 2 − ia(k + 2), which will, by induction, prove our

statement.

It follows from Definition 2, that for k�1

Rega(k + 1) = Rega(k) + �]0,1/2[(�k). (4)

Moreover, according to Definition 7, for k�1

ia(k + 2) = ia(k + 1) + 1 + �1(aia(k+1)). (5)

Putting (4) and (5) in the induction hypothesis for k+1, we see that

we have to show the following:

Rega(k) + �]0,1/2[(�k) = 2k + 2 − (ia(k + 1) + 1 + �1(aia(k+1))). (6)

Due to the induction hypothesis for k, it is enough to show that for

all k�1

�]0,1/2[(�k) = 1 − �1(aia(k+1)). (7)

To prove this, we use Theorem 9, which says that �k=[0; aia(k+1), . . .]:

�]0,1/2[(�k) = 1 ⇔ [0; aia(k+1), aia(k+1)+1, . . .]< 1
2

⇔ aia(k+1) �1 ⇔ 1 − �1(aia(k+1)) = 1.

This completes the proof. �

Now we are ready to formulate our main theorem. The theorem

is more parsimonious from a computational standpoint than Theo-

rem 4, because the function ia is very simple and contains only com-

putations with integers. This is an important advantage for efficient

computer program development. The entire description uses only

one function: the index jump function.

Theorem 11 (Main result; description by CFs). Let a ∈]0, 1[\Q and

a = [0; a1, a2, . . .]. For the digital straight line with equation y = ax, we

have ‖S1‖ = a1, ‖L1‖ = a1 + 1, and the forms of runsk+1
(form_runk+1

)

for k ∈ N+ are as follows:

form_runk+1
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Smk Lk if aia(k+1) �1 and ia(k + 1) is even,

SkL
m
k if aia(k+1) = 1 and ia(k + 1) is even,

LkS
m
k if aia(k+1) �1 and ia(k + 1) is odd,

Lmk Sk if aia(k+1) = 1 and ia(k + 1) is odd,

(8)

where m = bk+1 − 1 if the runk+1
is short and m = bk+1 if the runk+1

is long. The function ia is defined in Definition 7 and bk+1 = aia(k+1) +
�1(aia(k+1))aia(k+1)+1.

Proof. Theorem 11 follows from Theorems 4, 9 and 10. From Theo-

rem 4we know that the length of the short runsk+1
is �1/�∧

k �. Accord-
ing to Theorem 9, �k = [0; aia(k+1), aia(k+1)+1, . . .]. We have to consider

two cases:

• aia(k+1)>1. This means that �k < 1
2 and �∧

k = �k, so the length of

the short runs on the level k+1 is aia(k+1). Because �1(aia(k+1))=0,

we get the statement about the run lengths.

• aia(k+1) = 1. This means that �k > 1
2 and (from Definition 1)

�∧
k =1−�k=[0; 1+aia(k+1)+1, aia(k+1)+2, . . .], so the length of the short

runs on the level k+1 is 1+aia(k+1)+1=aia(k+1)+�1(aia(k+1))aia(k+1)+1.

Theorem 10 gives the statement concerning the form of runs on all

levels. It says that Rega(k)= 2k− ia(k+ 1) and Rega(k+ 1)= 2k+ 2−
ia(k+2), so the condition Rega(k+1)=Rega(k) is equivalent to ia(k+
2)= ia(k+1)+2, thus, according to Definition 7, to �1(aia(k+1))=1, so

aia(k+1)=1. In the same way we show that the condition Rega(k+1)=
Rega(k)+ 1 is equivalent to aia(k+1) �1. Moreover, because Rega(k)=
2k − ia(k + 1), the parity of Rega(k) and ia(k + 1) is the same for all

k, so we can replace “Rega(k) is even” from Theorem 4 by “ia(k + 1)

is even” in the CF description. �

Fig. 1 illustrates the connection between the hierarchy of runs

(the first 5 levels), the index jump function and the digitization
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parameters for y=ax, where a=[0; 1, 2, 1, 1, 3, 1, 1, a8, a9, . . .] for some

a8, a9, . . . ∈ N+, as described in Example 8.

Formula (8) shows that the value of the index jump function for

each natural k + 1�2 describes the index of the CF element which

determines the construction of runs on level k+1 in terms of runs of

level k. If this CF element (aia(k+1)) is equal to 1, themost frequent run

on level k is the long one (Lk). In all the other cases, i.e., if aia(k+1)>1,

the most frequently appearing run on level k is the short one (Sk).
This means that the CF elements equal to 1 which are indexed by

the values of the index jump function (greater than 1) play a very

special role in the run hierarchical construction of digitized y=ax. In
the author's paper [4] (submitted manuscript), elements like this are

called essential 1s. All the essential 1s in Example 8 are underlined.

The non-essential 1s there are a1, a4, a7, a14.

Definition 12. Let a= [0; a1, a2, . . .] be irrational. Let J=∅ if there are

no 1s in the CF expansion of a (excepted maybe for a1), J = N+ is

there are infinitely many 1s in the CF expansion of a and J = [1,M]Z
for some M ∈ N+ if there are M essential 1s in the CF expansion of

a. The following sequence (sj)j∈J : s1 = min(k ∈ N+; ak is essential),

and, for n ∈ J\{1}, sn =min(k>sn−1; ak is essential) (and (si)i∈∅ =∅ in

case J = ∅) we will call the sequence of the places of essential 1s in

the CF expansion of a.

In Example 8, the sequence of the places of essential 1s is

(3, 6, 10, 13, 15, . . .). Essential 1s have been used in the submitted

manuscript by the author [4] for a partition of all digital lines with

slopes a ∈]0, 1[\Q into equivalence classes. The equivalence relation

is defined by the essential 1s of the CF expansions of the slopes;

all the lines with identical sequences of the places of essential 1s

(Definition 12) are joint in the same equivalence class. They have

the same construction in terms of the forms of digitization runs.

This partition was possible because of the description contained in

Theorem 11.

4. Some applications of the main result

4.1. Slopes with periodic CF expansions

4.1.1. Period length 1

We are looking for numbers a ∈]0, 1[\Q having periodic CF ex-

pansion with period length 1, i.e., a= [0;n,n, . . .]= [0;n]. This means

that a is a root of equation a=1/(n+a), thus of a2 +na−1=0, which

gives a = 1
2 (

√
n2 + 4 − n), because a ∈]0, 1[. We have two groups of

lines:

• When n = 1, we get a one-element group, containing the line

y = 1
2 (

√
5 − 1)x with the Golden Section as slope. Here we have

ia(1)=1 and, for k�2, ia(k)=2k−2, which is always even.Moreover,

b1 = 1 and for k�1 we have bk+1 = a2k + a2k+1 = 2. According to

Theorem 11, we get the following digitization: ‖S1‖ = 1, ‖L1‖ = 2;

for k ∈ N+ : Sk+1 = SkLk, Lk+1 = SkL2k .
• When n�2, we have ia(k)= k for each k ∈ N+ and bk+1 = ak+1 = n

for all k ∈ N. This means, according to Theorem 11, that for all the

lines y = 1
2 (

√
n2 + 4 − n)x where n ∈ N+\{1}, we get the following

description of the digitization: ‖S1‖ = n, ‖L1‖ = n + 1; for k ∈ N+ :

S2k = Sn−1
2k−1

L2k−1, L2k = Sn
2k−1

L2k−1, S2k+1 = L2kS
n−1
2k , L2k+1 = L2kS

n
2k.

4.1.2. Period length 2

Now we are looking for numbers a ∈]0, 1[\Q having periodic CF

expansion with period length 2, i.e., a = [0;n,m]. This means that

a is a root of equation a = [0;n,m + a], thus of na2 + mna − m = 0,

which gives a=1/(2n)(
√
m2n2 + 4mn−mn), because a ∈]0, 1[. Ifm=n,

see the description for period length 1. Ifm�n, we get three possible

classes of lines:

• Whenm,n�2, we have ia(k)=k for each k ∈ N+ and bk+1=ak+1 for

all k ∈ N. This means, from Theorem 11, that for all the lines y=ax,
where a=1/(2n)(

√
m2n2 + 4mn−mn) for some n,m ∈ N+\{1}, we

get the following description of the digitization: ‖S1‖ = n, ‖L1‖ =
n + 1; for k ∈ N+ : S2k = Sm−1

2k−1
L2k−1, L2k = Sm

2k−1
L2k−1, S2k+1 =

L2kS
n−1
2k , L2k+1 = L2kS

n
2k.

• Whenm=1 and n�2, we have ia(1)=1 and b1=n. For k ∈ N+ we

have ia(k+1)=2k and bk+1 =a2k +a2k+1 =n+1. The digitization

is thus ‖S1‖=n, ‖L1‖=n+1; for k ∈ N+ : Sk+1=SkL
n
k , Lk+1=SkL

n+1
k .

• When m�2 and n = 1, we have ia(1) = 1, ia(2) = 2 and

ia(k + 1) = 2k − 1 for k�2, which means that ia(k) is odd for all

k�2. Moreover, b1 = 1, b2 = m and bk+1 = a2k−1 + a2k = 1 + m
for k�2. The digitization is thus as follows: ‖S1‖ = 1, ‖L1‖ = 2,

S2 = Sm−1
1 L1, L2 = Sm1 L1, and for k�2 we have Sk+1 = Lmk Sk and

Lk+1 = Lm+1
k Sk.

4.1.3. Generally—quadratic surds

Let us recall that an algebraic number of degree n is a root of an

algebraic equation a0xn + a1xn−1 + · · · + an−1x + an = 0 of degree n
with integer coefficients, but is not a root of any algebraic equation

of lower degree with integer coefficients. Algebraic numbers of the

second degree are called quadratic irrationals or quadratic surds. The

following theorem is a merge of Lagrange's theorem from 1770 with

Euler's theorem from 1737 (see [17, pp. 66–71]). Quadratic surds, and

only they, are represented by periodic CFs, meaning purely or mixed

periodic [17, p. 66]. It follows from this theorem that all the lines

with quadratic surds from the interval ]0,1[ as slopes have simple

digitization patterns, which can be described by general formulae

for all of the digitization levels. Moreover, in [18] on p. 88, we find

the following theorem.

If d is a positive, non-square integer, then we have
√
d = [x0;

x1, x2, . . . , x2, x1, 2x0], where each partial quotient is a positive integer.

The CFs of pure quadratic irrationals all have the same structure,

involving palindromes. Sequence A003285 in [19] shows for each

n ∈ N+ the length of the period of CF for
√
n (0 if n is a square).

Also in [18], on p. 89, we find some patterns in the CF expansions

of quadratic surds, for example
√
k2 + 1= [k; 2k],

√
k2 + 2= [k; k, 2k],√

k2 + m=[k; 2k/m, 2k]. These patterns make it very easy to construct

the digitization of the lines with slopes
√
k2 + 1 − k,

√
k2 + 2 − k,

or, generally,
√
k2 + m − k, using Theorem 11 from the present pa-

per. See pp. 83–91 in [18] for both theory and examples on this

subject.

4.2. Slopes with non-periodic CF expansions

Quadratic irrationals are not the only numbers showing simple

patterns in their CF expansion. There also exist transcendental num-

bers with simple patterns. CF sequences for some transcendental

number have periodic forms.

4.2.1. Examples involving Euler's number

Brezinski [20, p. 97] gives some examples of transcendental num-

bers with periodic form of CF expansion. The following examples

were given by Euler in 1737, but the first of them was, according to

Brezinski, already given by R. Cotes in the philosophical transactions

in 1714.

e − 2 = [0; 1, 2, 1, 1, 4, 1, 1, 6, 1, . . . , 1, 2k, 1, . . .] = [0; 1, 2k, 1]∞k=1, (9)

e + 1

e − 1
− 2 = [0; 2 + 4k]∞k=1,

e − 1

2
= [0; 1, 2 + 4k]∞k=1. (10)
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On p. 124 in [18] we find the following. For n�2

n
√
e − 1 = [0; (2k − 1)n − 1, 1, 1]∞k=1. (11)

On p. 110 in [20] we find the following formula, obtained by Euler

in 1737 and Lagrange in 1776, but each using different methods:

e2 − 1

e2 + 1
= [0; 1, 3, 5, . . . , 2k − 1, . . .] = [0; 2k − 1]∞k=1. (12)

This means that we are able to describe exactly, i.e., not by using

approximations by rationals, the construction of the digital lines

y= ax, where a is equal to e− 2, (e+ 1)/(e− 1)− 2, (e− 1)/2,
√
e− 1,

3
√
e−1 or (e2 −1)/(e2 +1), using Theorem 11 from the present paper.

Because of the repeating pattern in the CF expansions of the slopes,

we are able to obtain general formulae for all of the digitization

levels. Let us consider the following examples.

Example 13. If the slope a is equal to one of the following numbers:

(e + 1)/(e − 1) − 2, (e − 1)/2, (e2 − 1)/(e2 + 1), then the digitization

patterns can be described for all the lines y = ax in the following

way. For all k ∈ N+ we have ia(k) = k, thus bk = ak, because there

are no elements ak = 1 for k�2 in the CF expansions. This gives the

following digitization pattern for these lines: ‖S1‖ = a1, ‖L1‖ = a1 + 1

and for k ∈ N+

(Sk+1, Lk+1) =
{
(Sak+1−1

k Lk, S
ak+1

k Lk) if k is odd

(LkS
ak+1−1

k , LkS
ak+1

k ) if k is even.
(13)

The only difference in the digitization patterns for the three slopes

are different run lengths, defined by the elements ak of the CF ex-

pansions (10) and (12). In all the cases the sequences of the places

of essential 1s are (sn)n∈∅ = ∅.

Example 14. Formula (9) gives the digitization of the line y=axwith

a=e−2. Here ia(2k)=3k−1 (with aia(2k) =2k�1) and ia(2k+1)=3k
(with aia(2k+1) =1) for k ∈ N+, so we get b1 =1, b2k =2k and b2k+1 =2

for k ∈ N+, and the digitization pattern is as follows: ‖S1‖=1, ‖L1‖=2

and for k ∈ N+

(Sk+1, Lk+1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(SkkLk, S
k+1
k Lk) if k ≡ 1 (mod4),

(SkLk, SkL2k) if k ≡ 0 (mod4),

(LkS
k
k, LkS

k+1
k ) if k ≡ 3 (mod4),

(LkSk, L2kSk) if k ≡ 2 (mod4).

(14)

For example, S5 = S4L4 = (L3S33)(L3S
4
3) = (L22S2)(L2S2)

3(L22S2)(L2S2)
4 =

(S21L1)
2 (S1L1) [(S21L1) (S1L1)]

3 (S21L1)
2 (S1L1) [(S21L1) (S1L1)]

4, where

‖S1‖ = 1 and ‖L1‖ = 2. The corresponding sequence of essential 1s is

(3k)k∈N+ .

Example 15. Formula (11) gives the digitization of the lines y= anx
with an = n

√
e − 1 for n�2. Here, for each a = an, ia(2k) = 3k − 1

(with aia(2k)=1) and ia(2k+1)=3k+1 (with aia(2k+1)=(2k+1)n−1�1)

for k ∈ N+, so we get b1 = n − 1, b2k = 2 and b2k+1 = (2k + 1)n − 1

for k ∈ N+, and the digitization pattern is as follows: ‖S1‖ = n − 1,

‖L1‖ = n and for k ∈ N+

(Sk+1, Lk+1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(S(k+1)n−2

k Lk, S
(k+1)n−1

k Lk) if k ≡ 2 (mod4),

(SkLk, SkL2k) if k ≡ 1 (mod4),

(LkS
(k+1)n−2

k , LkS
(k+1)n−1

k ) if k ≡ 0 (mod4),

(LkSk, L2kSk) if k ≡ 3 (mod4).

(15)

For example, S5 = L4S
5n−2
4 = (L23S3)(L3S3)

5n−2 = (S3n−1
2 L2)

2S3n−2
2

L2(S
3n−1
2 L2S

3n−2
2 L2)

5n−2 = [(S1L1)
3n−1S1L21]

2(S1L1)
3n−2S1L21

[(S1L1)
3n−1S1L21(S1L1)

3n−2S1L21]
5n−2, where ‖S1‖ = n− 1 and ‖L1‖ = n.

The corresponding sequence of essential 1s is (3k−1)k∈N+ . All the

lines y = anx with an = n
√
e − 1 for n�2 have the same construction

in terms of long and short digitization runs on all digitization levels.

They all belong to the class generated by the sequence of important

1s being (3k − 1)k∈N+ .

4.2.2. Tangent function and digital rotations

Lambert proved in 1761 and described in [21] the following for-

mula. For x��/2 + m�, where m ∈ Z,

tan x = x

1 − x2

3 − x2

5 − x2

. . .

.

(16)

We put in (16) x = 1/k for any k ∈ N+\{1}, multiply successively

the numerators and denominators of the tails (the portions of the

number tan1/k remaining after a given convergent) by k and apply

successively Lemma 5 to them (when we are ready with the multi-

plication) and we get the following formula:

tan
1

k
= [0; k − 1, 1, (2n + 1)k − 2]∞n=1 for k�2. (17)

This formula can also be found in Michon [22]. Together with (8), for-

mula (17) shows that for each natural k�2 the lines y=(tan 1/k)x (i.e.,
the lines which form the angle of 1/k radian with the positive x-axis)
have exactly the same construction in terms of long and short digi-

tization runs on all the levels. Only the run lengths on all the levels

differ between each two lines from the set {y=(tan 1/k)x; k=2, 3, . . .}.
They all belong to the equivalence class generated by the Golden

Section, or, equivalently, by the sequence of essential 1s (2n)n∈N+ (cf.

Section 4.1.1, example with n = 1). As shown in the author's paper

[4] (submitted manuscript), it is the only class under the relation

defined by essential 1s which has a largest element. The largest ele-

ment of this class is the Golden Section. Let us consider the following

example.

Example 16. Let us put k = 2 in (17). Then we get

tan 1
2 = [0; 1, 1, 4, 1, 8, 1, 12, 1, 16, . . .] = [0; 1, 1, 4n]∞n=1. (18)

To get the digitization of the line y = ax which forms the angle of 1
2

radian with the positive x-axis, we use the CF elements of the slope

(a1=1; a2n=1 and a2n+1=4n for n ∈ N+), which gives ia(1)=1, b1=1,

and, for n ∈ N+, we have ia(n+1)=2n and bn+1=a2n+a2n+1=4n+1.

From Theorem 11 we obtain the following digitization pattern for

the line y = (tan 1
2 )x : ‖S1‖ = 1, ‖L1‖ = 2; for n ∈ N+ : Sn+1 = SnL4nn ,

Ln+1 = SnL4n+1
n . A part of S3 for this line is presented on Fig. 2.

Formula (16) together with the formula

tan(� + �) = tan� + tan�
1 − tan� tan�

and under the condition that CF arithmetic is not too hard to imple-

ment and can be economically and quickly performed by computers,

would give us a pure digital geometrical formula for rotations around

the origin about some angles of digital lines y = ax. Pure digital ge-

ometrical in the sense of only integer calculations on the elements

of the CFs describing the slope of the line to rotate (being tangent of
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Fig. 2. A part of S3 for the line y = (tan 1
2
)x.

the angle between the line and the positive x-axis) and the CF repre-

senting the tangent of the rotation angle. If a= [0; a1, a2, . . .] and the

rotation angle is � = 1/k (in radians) where k ∈ N+\{1}, then the CF

representing the slope of R
�
(0,0)

(l) being the result of the rotation of

l with equation y = ax around the origin with rotation angle � will

be the following:

[0; k − 1, 1, 3k − 2, 1, . . . , (2n + 1)k − 2, 1, . . .] + [0; a1, a2, . . .]
1 − [0; k − 1, 1, 3k − 2, 1, . . . , (2n + 1)k − 2, 1, . . .] · [0; a1, a2, . . .]

,

we thus get the CF expansion of the slope of the rotated line. This

would give us rotations about all the rational angles (in radian) be-

cause the formula for tan(�1 + �2) gives us the CF expansions of

tann/k for all n, k ∈ N+, where k�2. While rotating, we would get

slopes greater than 1, which we do not handle in Theorem 11. This

is however not the major problem—it is easy to adapt our descrip-

tion to slopes greater than 1 (digitizations of lines with irrational

slopes a<0 and a>1 can be obtained by a change of coordinates).

A much more serious problem would be to find good and efficient

algorithms for performing arithmetical operations on CFs. In the ab-

stract of [23], Gosper states: Contrary to everybody, this self contained

paper will show that continued fractions are not only perfectly amenable

to arithmetic, they are amenable to perfect arithmetic.

The problem of digital rotations has been extensively treated by

B. Nouvel and E. Rémila (see [24] and references there), but without

the use of CFs.

5. The Gauss map and the digitization parameters

As mentioned in Section 3, Theorem 9 can help us establish the

connection between the sequence of the digitization parameters

(�n)n∈N+ for the line y = ax and the sequence of the iterates of the

Gauss map (Gn(a))n∈N+ for each a ∈]0, 1[\Q . Let us recall that the

Gauss map G: [0, 1] → [0, 1] is defined as follows (see also [25]):

G(x)= frac (1/x) if 0<x�1 and G(0)=0. For x= [0; a1, a2, . . .] we have

obviously

Gn(x) = [0; an+1, an+2, . . .] for n ∈ N+. (19)

Formula (2) from Theorem 9 together with (19) gives us the follow-

ing:

�k = Gia(k+1)−1(a) for all k ∈ N+. (20)

Thus, according to Definition 7, the digitization parameters can be

expressed in terms of the Gauss map and the index jump function in

the following way: �1=G(a), �k+1=Gia(k+2)−1(a)=Gia(k+1)+�1(aia(k+1))(a)
for k ∈ N+.

This means that, for a given a ∈]0, 1[\Q , the sequence of the cor-

responding digitization parameters (�n)n∈N+ is equal to the sequence

of the iterates of the Gauss map (Gn(a))n∈N+ without some elements.

The elements which are absent in the sequence are exactly the it-

erates which are indexed by the values of the index jump function

associated with a (i.e. are equal to ia(k + 1) for some k ∈ N+) for

which aia(k+1) = 1 (which follows from Definition 7). Going back to

Theorem 11 and the comments following its proof we notice that

the missing iterates correspond to the digitization levels with runs

constructed mainly of the long runs of the previous level. Or, follow-

ing the terminology from the paper [4], the missing elements in the

sequence of the iterates of the Gauss map for a are these which are

indexed by the place numbers of the essential 1s in the CF expansion

of a (Definition 12). We have just proven the following proposition.

Proposition 17. Let a ∈]0, 1[\Q and a= [0; a1, a2, . . .]. The relation be-

tween the corresponding sequences (�n)n∈N+ of the digitization param-

eters for y = ax and (Gn(a))n∈N+ of the iterates of the Gauss map is the

following:

(�n)n∈N+ = (Gn(a))n∈I where I = N+\{sj}j∈J ,

where {sj}j∈J is the sequence of the places of essential 1s in the CF

expansion of a, as described in Definition 12.

For each a ∈]0, 1[\Q , such a subsequence of the sequence of all

the iterates of the Gauss map corresponding to a, describes thus the
form of digitization runs on all the levels for y = ax, according to

Theorem 4.

6. Conclusion

We have presented a computationally simple description of the

digitization of straight lines y= ax with slopes a ∈]0, 1[\Q , based on

the CF expansions of the slopes. The description reflects the hierar-

chical structure of digitization runs. Moreover, it is exact, avoiding

approximations by rationals.

The theoretical part of the paper was based on [1] and the exam-

ples were based on the literature concerning CFs [18,20,21]. The ex-

amples show how to use the theory in finding digitization patterns.

This description can also be useful in theoretical research on digital

lines with irrational slopes. For example, in [4] we have examined

some classes of digital lines, defined by the CF expansions of their

slopes.

The present method gives a special treatment to the CF elements

equal to 1, which makes it very powerful for some slopes with 1s in

the CF expansion. To our knowledge, there exist no other methods

of describing digital lines with irrational slopes by CFs which give

a special treatment to CF elements equal to 1, which makes our

method original.

A comparison between the present method and some other CF

methods is included in another paper by the author [26]. We show

there for example how to construct a slope a ∈]0, 1[\Q so that for

each n�2 the difference between the length of the digital straight

line segment (its cardinality as a subset of Z2) of y= ax produced in

the nth step of our method and the length of the digital straight line

segment of y= ax produced in the nth step of the method described

in [3] on p. 67 is as large as we decide in advance. In the same paper

we have shown that our method is different from the method by

standard sequences, as described in Lothaire [16, p. 75, 76, 104, 105].
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Abstract. The main result is a run-hierarchical description (by continued fractions) of up-

per mechanical words with slope a ∈ ]0, 1[ \Q and intercept 0. We compare this description

with two classical methods of forming of such words. In order to be able to perform the

comparison, we present a quantitative analysis of our method. We use the denominators of

the convergents of the continued fraction expansion of the slope to compute the length of the

prefixes obtained by our method. Due to the special treatment which is given to the elements

equal to 1, our method gives in some cases longer prefixes than the two other methods. Our

method reflects the hierarchy of runs, by analogy to digital lines, which can give a new un-

derstanding of the construction of upper mechanical words.

Keywords: upper mechanical word, characteristic word, digital line, irrational slope, con-

tinued fraction, run, hierarchy.

1 Introduction

In the presented paper we have basically two goals. The first one is to create a

description of the construction of upper mechanical words (Def. 2) with irrational

positive slope a < 1 and intercept 0, according to the hierarchy of runs, runs of runs,

etc. Such a description can be a useful tool for examining of properties of upper and

lower mechanical and characteristic words with irrational slopes, as has been shown

in another paper by the author [10]. Our second goal is to show that our method

works, in certain cases, faster than two well-known methods of forming of prefixes

of characteristic words.

The theoretical base for this article are two earlier papers [8, 9] of the author.

The run-hierarchical method is derived from the author’s continued fraction (CF)

based description of digitization of positive half lines y = ax. It is based on simple

integer computations, thus can be used with advantage in computer programming.

This qualitative description constitutes the first main result of the present paper

(Theorem 3).

The second main result is a quantitative description of our method of forming

prefixes of upper mechanical words (Theorem 6 and Corollary 1). We show there how

to calculate the length of the prefixes of upper mechanical word formed according to

our method. The length is expressed in terms of the denominators of the convergents
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of the CF expansion of the slope. These formulae allow us to compare our method

with the classical and most frequently used descriptions by Venkov (1970) [11] and

by Shallit (1991) [7]. In both of them one can express the length of the prefixes by

these denominators (see Proposition 2 and Theorem 5).

The special treatment the CF elements equal to 1 get in our description (The-

orem 3) makes that our process of forming words generates for some slopes longer

prefixes than the similar classical recursive formulae presented by Shallit and Venkov.

We show that, for all a, the prefix Pk of the upper mechanical word s′(a) =

1c(a) generated by our method is longer or of the same length compared to the

prefix Xk of the corresponding word c(a) generated by Shallit’s method for each

k ∈ N+ (Proposition 3). For some a our method generates much longer prefixes

(Proposition 4 and Theorem 7).

The comparison with Venkov’s method begins with Theorem 8. It depends on

the set of 1’s in the CF expansion of the slope a. For some a our method gives much

longer prefixes than the method of Venkov after the same number of steps and

our advantage can be as large as we want. For other slopes the method of Venkov

generates longer prefixes (Proposition 5). However, Venkov’s advantage in the kth

step for each k ≥ 3 is always bounded by k (Proposition 6), while our advantage

in case of slopes containing 1’s in their CF expansion can be arbitrarily large. The

advantage in this paper is expressed by the quotient of the length of the prefixes

obtained when using the methods we compare.

The fact that we highlight some CF elements equal to 1 in the expansion of

the slopes is not because they give us sometimes an advantage of forming longer

prefixes than when using the well-known methods but because they determine the

construction of lines (words) in terms of runs. This will be explained in what follows

under Theorem 2 and in Section 6.

A list of references to papers concerning CF descriptions of characteristic words

with irrational slopes can be found in Lothaire (2002) [4]. The most relevant for

the present paper are Bernoulli (1772), Markoff (1882), Stolarsky (1976), Fraenkel

et al. (1978) and Brown (1993). The first three papers correspond to the method of

Venkov (described already much earlier by Markov), the last two correspond to the

method of Shallit. The CF description method presented in Theorem 3 seems to be

the only one which gives prefixes constructed according to the run hierarchy. This

enables us to analyze the construction of upper mechanical words, which has been

presented by the author in [10].

2 Continued Fractions — a Brief Introduction

The following algorithm gives the regular (or simple) CF for a ∈ R \ Q, which we

denote by [a0; a1, a2, a3, . . .]. We define a sequence of integers (an) and a sequence

of real numbers (αn) by: α0 = a; an = �αn� and αn = an + 1
αn+1

for n ≥ 0. Then

an ≥ 1 and αn > 1 for n ≥ 1. The integers a0, a1, a2, . . . are called the elements of the
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CF (or terms, or partial quotients). We use the word elements, following Khinchin

(1997:1) [2]. Because a is irrational, so is each αn, and the sequences (an) and (αn)

are infinite. A CF expansion exists and is unique for all a ∈ R \ Q; see [2], p. 16.

For k ∈ N, the kth order convergent of the CF a = [a0; a1, a2, . . .] is the canonical

representation of the number sk = [a0; a1, a2, . . . , ak]. We will denote it by pk/qk. The

following theorem comes from the definition of CFs and can be found for example

in Khinchin (1997:4) [2].

Theorem 1. For the denominators of the convergents of each a = [a0; a1, a2, . . .]

we have q0 = 1, q1 = a1, and, for k ≥ 2, qk = akqk−1 + qk−2.

It follows immediately from the recursive formula in Theorem 1 that the sequence

(qn)n∈N+ for each a ∈ R \Q is a strictly increasing sequence of natural numbers.

We will exploit this fact heavily in what follows.

3 Earlier Results

In this section we recapitulate some results obtained by the author in [9]. Arithmeti-

cal description of the modified Rosenfeld digitization (R′-digitization) of the positive

half line y = ax for a ∈ ]0, 1[ \ Q as a subset of Z2 is the following:

DR′(y = ax, x > 0) = {(k, �ak�); k ∈ N+}. (1)

Our CF description from [9] was based on the description by digitization parameters

from Uscka-Wehlou (2007) [8] and the following index jump function.

Definition 1. For each a ∈ ]0, 1[ \ Q, the index jump function ia : N+ → N+ is

defined by ia(1) = 1, ia(2) = 2 and ia(k + 1) = ia(k) + 1 + δ1(aia(k)) for k ≥ 2,

where δ1(x) =

{
1, x = 1

0, x 	= 1
and a1, a2, . . . ∈ N+ are the CF elements of a.

The index jump function is a renumbering, which avoids elements following directly

after some 1’s in the CF expansion (in particular, it avoids every second element in

the sequences of consecutive 1’s with index greater than 1).

In both papers [8] and [9], digital lines were described according to the hierarchy

of runs on all the digitization levels. The term run was already introduced by Azriel

Rosenfeld (1974:1265) [6]. For the formal definition of runs and the modification of

Rosenfeld digitization see [8]. We called runk(j) for k, j ∈ N+ a run of digitization

level k. Each run1(j) can be identified with a subset of Z2:

{(i0+1, j), (i0+2, j), . . . , (i0+m, j)}, where m is the length |run1(j)| of this run. For

each a ∈ ]0, 1[ \Q we have only two possible run1 lengths:
⌊

1
a

⌋
and

⌊
1
a

⌋
+ 1. All the

runs with one of those lengths always occur alone, i.e., do not have any neighbors

of the same length in the sequence (run1(j))j∈N+ , while the runs of the other length

can appear in sequences. The same holds for the sequences (runk(j))j∈N+ on each

level k ≥ 2, i.e., runs on each level k can have one of two possible lengths (being
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consecutive natural numbers) and runs with one of these lengths always appear alone

in the sequence of runsk. Runs of level k+1 for k ∈ N+ are defined recursively, as sets

of runsk and, in this context (but it will no longer be so in Section 5), by the length

of runk+1 we mean its cardinality. Each runk+1 consists of one singly appearing runk

(called short run of level k and denoted Sk if its length is expressed by the least of

the mentioned consecutive numbers for level k and called long run of level k and

denoted Lk otherwise) and all the runsk (Lk or Sk, respectively) which can appear

in sequences comming between this single runk and the next or the previous single

runk, depending on runk(1), in the sequence (runk(j))j∈N+ . This means that runsk+1

for each k ∈ N+ can have one of following four shapes: Sm
k Lk, LkS

m
k , Lm

k Sk or SkL
m
k ,

where m can be one of two consecutive positive integers which depend on the slope

a and the level number k. For example, Sm
k Lk means that the runk+1 consists of

m short runsk (Sk) and one long runk (Lk) in this order. For the purpose of this

paper this description suffices; for the formal definition see [8]. Moreover, Theorem

2, proven in [9], can serve as a definition of runs in the digitizations of straight lines

y = ax for a ∈ ]0, 1[ \Q, since it presents a complete recurrent description of these.

The theorem is completely CF based.

Theorem 2 (Main Result in [9]; description by CFs). Let a ∈ ]0, 1[ \ Q

and a = [0; a1, a2, . . .]. For the digital line with equation y = ax, we have |S1| =

a1, |L1| = a1 + 1, and the forms of runsk (form runk) for k ≥ 2 are as follows:

form runk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Sm
k−1Lk−1 if aia(k) 	= 1 and ia(k) is even

Sk−1L
m
k−1 if aia(k) = 1 and ia(k) is even

Lk−1S
m
k−1 if aia(k) 	= 1 and ia(k) is odd

Lm
k−1Sk−1 if aia(k) = 1 and ia(k) is odd,

(2)

where m = bk − 1 if the runk is short (Sk) and m = bk if the runk is long (Lk). The

function ia is defined in Def. 1 and bk = aia(k) + δ1(aia(k))aia(k)+1.

We remark that the value of the index jump function for each natural k ≥ 2 describes

the index of the CF element which determines the construction of runs on level k

in terms of runs of level k − 1. If this CF element (aia(k)) is equal to 1, the most

frequent run on level k − 1 is the long one (Lk−1). In all the other cases, i.e., if

aia(k) > 1, the most frequently appearing run on level k − 1 is the short one (Sk−1).

This means that the CF elements equal to 1 which are indexed by the values of the

index jump function (greater than 1) play a very special role in the run hierarchical

construction of digitized y = ax. In the author’s paper [10] elements like this are

called essential 1’s. They have been used in [10] for a partition of all digital lines

with slopes a ∈ ]0, 1[\Q into equivalence classes. The equivalence relation is defined

by the essential 1’s of the CF expansions of the slopes and all the lines belonging

to the same class have the same construction in terms of the forms of digitization

runs. This partition was possible because of the description contained in Theorem 2

and can be of interest for combinatorics on words, due to the equivalence between

digital lines and mechanical words.
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4 Characteristic and (Upper, Lower) Mechanical Words

and the Modified Rosenfeld Digitization

First we provide a brief introduction to characteristic and upper and lower mechan-

ical words. The following definition comes from Lothaire (2002:53) [4].

Definition 2. Given two real numbers α and ρ with 0 ≤ α ≤ 1, we define two

infinite words sα,ρ : N → {0, 1}, s′α,ρ : N → {0, 1} by

sα,ρ(n) = �α(n + 1) + ρ� − �αn + ρ�, s′α,ρ(n) = �α(n + 1) + ρ� − �αn + ρ�.

The word sα,ρ is the lower mechanical word and s′α,ρ is the upper mechanical word

with slope α and intercept ρ. A lower or upper mechanical word is irrational or

rational according as its slope is irrational or rational.

In the present paper we deal with the special case when α ∈ ]0, 1[ is irrational and

ρ = 0. In this case we will denote the lower and upper mechanical words by s = s(α)

and s′ = s′(α) respectively. We have s0 = s0(α) = �α� = 0 and s′0 = s′0(α) = �α� = 1

and, because �x� − �x� = 1 for irrational x, we have

s = s(α) = 0c(α), s′ = s′(α) = 1c(α) (3)

(meaning 0, resp. 1 concatenated to c(α)). The word c(α) is called the characteristic

word of α. For each α ∈ ]0, 1[ \Q, the characteristic word associated with α is thus

the following infinite word c = c(α) : N+ → {0, 1}:

cn = �α(n + 1)� − �αn� = �α(n + 1)� − �αn�, n ∈ N+. (4)

The connection between characteristic words and digital lines is a well-known

fact. See for example Lothaire (2002:53, 2.1.2 Mechanical words, rotations) [4], Pyth-

eas Fogg (2002:143, 6. Sturmian Sequences) [5] or Klette and Rosenfeld (2004) [3].

In [8] the author remarks that the modified Rosenfeld digitization of the line y = ax,

where a ∈ ]0, 1[ \Q, is the subset of Z2 described by (1). This means, from (3) and

(4), that the sequence s′0 = 1, s′n = �(n + 1)a� − �na� for n ∈ N+ describes the

R′-digitization of y = ax, x > 0. So, for any a ∈ ]0, 1[ \ Q, the upper mechanical

word s′(a), as defined in Def. 2, describes completely the digitization of the positive

half line y = ax. We can thus write s′(a) = 10m110m210m3 . . ., where mi ∈ N for

i ∈ N+. We have |run1(i)| = 1+mi, each run begins with a 1. Moreover, there exists

d1 ∈ N such that for all i ∈ N+ we have mi = d1 or mi = d1 + 1 and we know from

the theory for digital lines that d1 = � 1
a
� − 1. If � 1

a
� = 1, then d1 = 0 and |S1| = 1.

Because of the correspondence between digital lines y = ax and upper mechanical

words s′(a) for a ∈ ]0, 1[ \ Q, we also have the run hierarchical structure of upper

mechanical words. Runs of level 1 are S1 = 10d1 and L1 = 10d1+1, where d1 = � 1
a
�−1

and we can defined recursively for each k ∈ N+ the runs of level k + 1 as sets of

runs of level k symbolically denoted as S
dk+1

k Lk, LkS
dk+1

k , L
dk+1

k Sk or SkL
dk+1

k , where
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dk+1 can be one of two consecutive positive integers which depend on the slope a

and the level number k +1. We again use the notation of S for short and L for long,

because words also have two possible run lengths (cardinalities) per level, due to the

equivalence between digital lines and upper mechanical words.

The upper mechanical words s′ for the slopes of all the lines with digitization

around the origin as shown in the picture in Fig. 1 begin with 10001000.

� � � � �� � � 	 � � �

� � � 	 � 	 �� 	 � 	 �

� � � 	 � 
 �

� � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

	 � � � � � � � � � � � � � 


� � � � � � � 	 � � � � � � �

� � � � � � � � � � � � � � �

Fig. 1. Upper mechanical words s′(a) and digital lines y = ax for a ∈
]

1
5
, 1

4

[
\ Q.

This correspondence between the words and digital lines allows us to derive the

following CF description of upper mechanical words from our result for digital lines.

Because we have (3), our result will also give a description of lower mechanical words

and characteristic words.

Theorem 3 (Main Result 1; a run-hierarchical CF description of upper

mechanical words). Let a ∈ ]0, 1[\Q and a = [0; a1, a2, . . .]. For s′(a) as in Def. 2

we have s′(a) = limk→∞ Pk, where P1 = S1 = 10a1−1, L1 = 10a1, and, for k ≥ 2,

Pk =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Lk = S
aia(k)

k−1 Lk−1 if aia(k) 	= 1 and ia(k) is even

Sk = Sk−1L
aia(k)+1

k−1 if aia(k) = 1 and ia(k) is even

Sk = Lk−1S
−1+aia(k)

k−1 if aia(k) 	= 1 and ia(k) is odd

Lk = L
1+aia(k)+1

k−1 Sk−1 if aia(k) = 1 and ia(k) is odd,

(5)

where the function ia is defined in Def. 1. The meaning of the symbols is the fol-

lowing: for k ≥ 1, Pk - Prefix number k, Sk - Short runk and Lk - Long runk. To

make the recursive formula (5) complete, we add that for each k ≥ 2, if Pk = Sk,

then Lk is defined in the same way as Sk, with the only difference that the exponent

defined by aia(k) (or by aia(k)+1) is increased by 1. If Pk = Lk, then Sk is defined in

the same way as Lk, with the only difference that the exponent defined by aia(k) (or

by aia(k)+1) is decreased by 1.

Proof. We use Theorem 2 and the equivalence between the digital half lines y = ax

(where a ∈ ]0, 1[ \ Q and x > 0) and the words s′(a). We introduced Pk which

corresponds to runk(1) for each k ∈ N+. According to Theorem 2, runk−1(1) for

k ≥ 2 is short if ia(k) is even (this result is represented by the first two rows of

(2)) and long if ia(k) is odd (rows 3 and 4 in (2)). This means that Pk = runk(1)

is short (Sk) if ia(k + 1) is even and long (Lk) if ia(k + 1) is odd. Because we have
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ia(k+1) = ia(k)+1+δ1(aia(k)), the parity of ia(k+1) is determined by the parity of

ia(k) and δ1(aia(k)), thus, in the cases described by the first and the fourth rows of

(2), Pk = Lk, and, in the cases described by the second and the third rows, Pk = Sk.

The exponents in (5) are computed according to the formula for bk presented in

Theorem 2. ��

We have described s′(a) by an increasing sequence of prefixes (Pk)k∈N+ . Prefix Pk

for each k ∈ N+ corresponds to the first run of level k (runk(1)) in the digitization

of y = ax, so this description reflects the hierarchy of runs.

Figure 2 shows a digital straight line segment (a prefix of upper mechanical

word) and its hierarchy of runs. The picture shows the first digitization run on level

5, run5(1) = S5 (the 5th prefix P5) for the lines y = ax (the words s′(a)) with slopes

a = [0; 1, 2, 1, 1, 3, 1, 1, a8, a9, . . .], where a8, a9, . . . ∈ N+. The dark squares on Fig. 2

represent the short runs1. They can occur in sequences, while the long runs1 (white)

can only appear alone. We will revisit this example in Sect. 5 (Example 1). More

about the hierarchy of runs can be found in Sect. 3.
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Fig. 2. Hierarchy of runs.

5 Comparison Between our Description by CFs and the

Methods Described by Venkov and Shallit

In this section we consider only binary words over the two letter alphabet {0, 1}. For

each such a word A, if it is finite, we denote by |A| the length of A, being the total
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number of 0’s and 1’s forming A. In this section we no longer use the cardinality-

wise run length as introduced in Section 3; we only use the (binary word)-length as

defined above.

Let us first recall the well-known result formulated by the astronomer J. Bernoulli

in 1772, proven by A. Markov in 1882 and described by Venkov (1970:67) [11].

Theorem 4 (Markov, Venkov). For each irrational a = [0; a1, a2, a3, . . .], the

characteristic word is c(a) = C1C2C3 . . ., where

{
C1 = 0a1−11

D1 = 0a11
,

{
C2 = Ca2−1

1 D1

D2 = Ca2
1 D1

, · · · ,
{

Cn = Can−1
n−1 Dn−1

Dn = Can
n−1Dn−1.

Proposition 1 describes the length of Cn and Dn (meaning the number of 0’s and

1’s occurring in them), which leads immediately to Proposition 2.

Proposition 1. With all the assumptions and the notation as in Theorem 4, we

have |Ck| = qk and |Dk| = qk + qk−1 for all k ∈ N+, where qk is the denominator

of the kth convergent of the CF expansion of a.

Proof. By induction. For k = 1 we have C1 = 0a1−11, so |C1| = a1 = q1 and

D1 = 0a11, so |D1| = a1 + 1 = q1 + q0. Let’s assume that |Ck| = qk and |Dk| =

qk + qk−1 for some k ≥ 1. By this assumption, combined with the definition of Ck+1

and Dk+1 and Theorem 1, we get |Ck+1| = (ak+1 − 1)qk + qk + qk−1 = qk+1 and

|Dk+1| = ak+1qk + qk + qk−1 = qk+1 + qk. ��
Proposition 2. Let a ∈ ]0, 1[ \ Q. For each n ∈ N+, the length of the nth prefix

C1 · · ·Cn of c(a) as defined in Theorem 4 is |C1 · · ·Cn| = q1 + · · ·+ qn, where qk for

k ∈ N+ is the denominator of the kth convergent of the CF expansion of a.

The second CF description of c(a) we consider is that by Shallit (1991) [7], where

c(a) is formed as a limit of an increasing sequence of prefixes (Xn)n∈N+ ; cf. the

method by the standard sequences from Lothaire (2002:75, 76, 104, 105) [4].

Theorem 5 (Shallit 1991). Let a = [0; a1, a2, a3, . . .] be irrational and c(a) =

(�(n + 1)a� − �na�)n∈N+ be its characteristic word. Let X0 = 0. For the sequence of

finite words (Xn)n∈N+ being prefixes Xn = c1c2 · · · cqn of c(a) of length qn, where qn

are the denominators of the convergents of the CF expansion of a, we have

X1 = 0a1−11 and, for n ≥ 2, Xn = Xan
n−1Xn−2.

As we have seen (Proposition 2 and Theorem 5), the length of the prefixes of c(a)

obtained in both methods (Venkov’s, Shallit’s) can be expressed by the denominators

of the convergents of the CF expansion of a. To be able to compare our result with

their methods, we will now express the length of the prefixes Pk (from Theorem 3) of

the upper mechanical word s′(a) = 1c(a) in the same terms. The result is contained

in Corollary 1. To get the corollary, we need the following theorem, which forms one

of the main results in the present paper.
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Theorem 6 (Main Result 2; a quantitative description of runs). Let

a ∈ ]0, 1[ \ Q and a = [0; a1, a2, . . .]. For the word s′(a) we have for all k ∈ N+:

|Sk| = qia(k+1)−1 and |Lk| = qia(k+1)−1 + qia(k+1)−2,

where ia is the index jump function (Def. 1), |Sk| and |Lk| for k ∈ N+ denote the

(binary word)-length of short, respectively long runs of level k as in Theorem 3, and

qk are the denominators of the convergents of the CF expansion of a.

Proof. By induction. We also use Def. 1 and Theorem 1. For k = 1 the statement is

true, because ia(2) = 2 and, due to Theorem 3, |S1| = a1 = q1 and |L1| = a1 + 1 =

q1 + q0. Let us now assume that the statement is true for some n − 1 ≥ 1. We will

show that it is also true for n. We consider four cases, as in Theorem 3:

• aia(n) 	= 1 and ia(n) is even.

We have ia(n + 1) = ia(n) + 1 and qia(n) = aia(n)qia(n)−1 + qia(n)−2, so:

|Sn| = (aia(n)−1)qia(n)−1 +qia(n)−1 +qia(n)−2 = qia(n)−qia(n)−1 +qia(n)−1 = qia(n) =

qia(n+1)−1, |Pn| = |Ln| = aia(n)qia(n)−1 + qia(n)−1 + qia(n)−2 = qia(n) + qia(n)−1 =

qia(n+1)−1 + qia(n+1)−2.

• aia(n) = 1 and ia(n) is even.

We have ia(n + 1) = ia(n) + 2 and qia(n) = qia(n)−1 + qia(n)−2, so:

|Pn| = |Sn| = qia(n)−1 + aia(n)+1 · qia(n) = qia(n)+1 = qia(n+1)−1,

|Ln| = qia(n)−1 + (1 + aia(n)+1) · qia(n) = qia(n)+1 + qia(n) = qia(n+1)−1 + qia(n+1)−2.

• aia(n) 	= 1 and ia(n) is odd.

We have ia(n + 1) = ia(n) + 1 and qia(n) = aia(n)qia(n)−1 + qia(n)−2, so:

|Pn| = |Sn| = qia(n)−1 + qia(n)−2 + (aia(n) − 1)qia(n)−1 = qia(n) + qia(n)−1 − qia(n)−1 =

qia(n) = qia(n+1)−1, |Ln| = qia(n)−1 + qia(n)−2 + aia(n)qia(n)−1 = qia(n)−1 + qia(n) =

qia(n+1)−2 + qia(n+1)−1.

• aia(n) = 1 and ia(n) is odd.

We have ia(n + 1) = ia(n) + 2 and qia(n) = qia(n)−1 + qia(n)−2, so:

|Sn| = aia(n)+1qia(n) + qia(n)−1 = qia(n)+1 = qia(n+1)−1,

|Pn| = |Ln| = (1+aia(n)+1)qia(n)+qia(n)−1 = qia(n)+qia(n)+1 = qia(n+1)−2+qia(n+1)−1.

The proof is complete. ��
Corollary 1 (a quantitative description of prefixes). Let a ∈ ]0, 1[ \ Q and

a = [0; a1, a2, . . .]. The length of the prefixes Pk of the the upper mechanical word

s′(a) as defined in Theorem 3 is: |P1| = |S1| = a1 and for all k ≥ 2:

|Pk| =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|Lk| = qia(k) + qia(k)−1 if aia(k) 	= 1 and ia(k) is even

|Sk| = qia(k)+1 if aia(k) = 1 and ia(k) is even

|Sk| = qia(k) if aia(k) 	= 1 and ia(k) is odd

|Lk| = qia(k)+1 + qia(k) if aia(k) = 1 and ia(k) is odd,

(6)
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where ia is the index jump function and qn for n ∈ N+ is the denominator of the

nth convergent of the CF expansion of a.

Proof. Follows from Theorems 3 and 6, and the fact that, for k ≥ 2, ia(k + 1) =

ia(k) + 1 if aia(k) 	= 1 and ia(k + 1) = ia(k) + 2 if aia(k) = 1. ��
Let us remark that Corollary 1 shows that the sequences (Pk)k∈N+ of prefixes of

upper mechanical words s′(a) generated by our method are usually (i.e., for most

slopes a) not subsequences of (Xk)k∈N+ generated by Shallit, even if we put the

letter 1 in the front of each Xk and remove the last letter of each Xk, getting in this

way prefixes of s′(a) = 1c(a) with length equal to the denominator of a convergent

of a. We have to impose two conditions on the slope a to make the corresponding

(Pk)k∈N+ be a subsequence of the corresponding (Xk)k∈N+ (after this extra operation

of putting the letter 1 in the front of each Xk and taking away the last letter of each

Xk). These conditions imposed on the CF elements of a are:

– for each k for which |Pk| = qia(k) + qia(k)−1 it must be aia(k)+1 = 1, in order to

get qia(k) + qia(k)−1 = qia(k)+1 (Theorem 1) so that Pk has the length equal to the

denominator of a convergent of a, like Xia(k)+1 (Theorem 5).

– for each k for which |Pk| = qia(k)+1 + qia(k) it must be aia(k)+2 = 1, in order to get

qia(k)+1 + qia(k) = qia(k)+2 so that Pk has the length equal to the denominator of

a convergent of a, like Xia(k)+2.

All the lines as described in Example 2 below have this property (that the sequence

of prefixes described by our method is a subsequence of the prefixes generated by

Shallit’s method - we use every second element of the sequence used by Shallit),

but for the most slopes this is not the case. This also shows that the method by

Shallit does not reflect the run hierarchical structure of words and that our method

is different from his. We can say the same about the method by Venkov, but this is

obvious, so we leave out the proof in this paper.

Example 1. The line segments runk(1) for k = 1, 2, 3, 4, 5 on Fig. 2 correspond to

the prefixes Pk of s′(a) for all a such that a = [0; 1, 2, 1, 1, 3, 1, 1, a8, a9, . . .], where

a8, a9, . . . ∈ N+. For these a, ia(1) = 1, ia(2) = 2, ia(3) = 3, ia(4) = 5, ia(5) = 6,

ia(6) = 8, and the denominators of the convergents are q1 = 1, q2 = 3, q3 = 4, q4 =

qia(4)−1 = 7, q5 = qia(4) = 25, q6 = qia(5) = 32, q7 = qia(6)−1 = 57. It is easy to check

that the length |Pk| of prefixes (runs) on Fig. 2 agrees with Corollary 1, so |P1| = 1,

|P2| = 4, |P3| = 11, |P4| = 25, |P5| = 57.

Example 2. Let a = [0; a1, 1, a3, 1, a5, 1, a7, 1, a9, . . .], where a2n+1 ∈ N+ for all n ∈
N. For s′(a) we have |Pk| = |Sk| = q2k−1 and |Lk| = q2k for all k ∈ N+ (the notation

as in Theorem 3).

Indeed, the index jump function is ia(1) = 1, ia(k) = 2k − 2 for k ≥ 2, so it

is even for all k ≥ 2. Moreover, aia(k) = 1 for k ≥ 2. From Theorem 6, |Lk| =

qia(k+1)−1 + qia(k+1)−2 = aia(k+1)qia(k+1)−1 + qia(k+1)−2 = qia(k+1) = q2k and |Sk| =

qia(k+1)−1 = q2k−1, and from Corollary 1, |Pk| = |Sk| for k ∈ N+.
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Example 3. Let a = [0; a1, a2, a3, a4, . . .], where a1 ∈ N+ and an ≥ 2 for all n ≥ 2

(thus ia(k) = k for all k ∈ N+). Due to Corollary 1, the lengths of the prefixes Pk

(for k ∈ N+) of s′(a) as defined in Theorem 3 are:

|Pk| =

{ |Sk| = qk if k is odd

|Lk| = qk + qk−1 if k is even.
(7)

Formulae (7) and the one from Proposition 1 look similar (we get the length qk and

qk + qk−1 in both cases), but they describe different parts of prefixes of s′(a).

Now we will compare our method to that of Shallit.

Proposition 3. Let a ∈ ]0, 1[ \ Q and a = [0; a1, a2, . . .]. We have |Pk| ≥ |Xk| for

all k ∈ N+, where Pk is our kth prefix of s′(a) = 1c(a) and Xk is Shallit’s kth prefix

of c(a). There exists k ≥ 2 for which the inequality is strict.

Proof. For any a we have |P1| = q1 = |X1|. The sequence (qn)n∈N+ is strictly in-

creasing and for each k ∈ N+ we have ia(k) ≥ k, thus, from Theorems 6 and 5, we

get |Pk| ≥ |Sk| = qia(k+1)−1 ≥ qk = |Xk| for k ∈ N+. The last statement follows from

Corollary 1 and Example 3. The situation when only Sk with length qk are prefixes

is not possible and, if there is an element as = 1 (s ≥ 2) in the CF expansion of a,

we have ia(s + 1) = ia(s) + 2, so qia(s+1)−1 = qia(s)+1 > qs. ��

We have just shown that, for each a ∈ ]0, 1[ \Q and each k ∈ N+, our kth prefix

of s′(a) = 1c(a) has the same length or is longer than Shallit’s kth prefix Xk of c(a).

The words are formed more quickly according to our method. Now we will show

that our advantage (expressed by quotient) can be arbitrarily large.

Proposition 4. For the methods from Theorems 3 and 5 we have the following:

∀ (En)n≥2 ∃ a ∈ ]0, 1[ \ Q ∀ k ≥ 2 |Pk| ≥ Ek · |Xk|, (8)

where (En)n≥2 is any infinite sequence of positive (large) numbers, Pk is our kth

prefix of s′(a) = 1c(a) and Xk is Shallit’s kth prefix of c(a).

Proof. Let (En)n≥2 be any sequence of (large) positive numbers. We will show how to

construct by induction a slope a = [0; a1, a2, . . .] fulfilling (8). We take any a1 ∈ N+

and a2 = 1. Because a2 = 1, then, for every k ≥ 2, we have ia(k + 1) ≥ k + 2. In the

induction step, when we already have defined a1, . . . , ak for some k ≥ 2, thus also

have q1, . . . , qk, we define ak+1 in order to get |Pk|/|Xk| ≥ Ek.

According to Corollary 1 and Theorem 1 (the sequence (qn)n∈N+ is increasing), we

have |Pk| ≥ |Sk| = qia(k+1)−1 ≥ qk+1 = ak+1qk+qk−1, and, from Theorem 5, |Xk| = qk,

so we have |Pk|/|Xk| ≥ (ak+1qk + qk−1)/qk ≥ ak+1. This means that |Pk|/|Xk| ≥ Ek

if ak+1 ≥ Ek, so we can take for example ak+1 = �Ek�. ��
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Slopes with only one element equal to 1 in the CF expansion can already give

us as large an advantage as we define a priori. It should be possible to get much

better results for the slopes as in Example 2, where the quotient |Pk|/|Xk| is equal

to q2k−1/qk for all k ∈ N+. The following lemma (cf. [2] , p. 13) helps us perform

further comparisons between our method and the method of Shallit.

Lemma 1. Let a = [0; a1, a2, . . .]. For all k ≥ 2 we have q2k−1 ≥ 2
k−2
2 qk, where qn

for n ≥ 2 is the denominator of the nth convergent of the CF expansion of a.

Proof. For k = 2 we get q3 ≥ q2, which is true. From Theorem 1 and because the

sequence (qn)n∈N+ is increasing, we have q4j+1 = a4j+1q4j + q4j−1 ≥ q4j + q4j−1 ≥
2q4j−1 for j ≥ 1. Successive application of this inequality yields

q4j+1 ≥ 2sq4j−(2s−1) for s = 1, 2, . . . , 2j. (9)

We put s = j in (9) and we get q2k−1 ≥ 2
k−1
2 qk, thus q2k−1 ≥ 2

k−2
2 qk, for odd k.

From Theorem 1 and (9), q4j+3 = a4j+3q4j+2 + q4j+1 ≥ q4j+2 + q4j+1 ≥ 2q4j+1 ≥
2 · 2j−1q2j+3 ≥ 2jq2j+2, which gives the statement for even k. ��
Theorem 7. For the slopes a as in Example 2 we have the following:

• ∀ k ≥ 2 |Pk| = |X2k−1|,
• ∀ k ≥ 2 |Pk| ≥ 2

k−2
2 · |Xk|,

where Pk is our kth prefix of s′(a) = 1c(a) and Xk is Shallit’s kth prefix of c(a).

Moreover, for the methods from Theorems 3 and 5, we have the following:

∀ (En)n≥2 ∃ a ∈ ]0, 1[ \ Q ∀ k ≥ 2 |Pk| ≥ Ek · |X2k−2|, (10)

where (En)n≥2 is any infinite sequence of positive (large) numbers.

Proof. From Theorem 5, |Xk| = qk for k ∈ N+. From Example 2, |Pk| = q2k−1 for

k ≥ 2, which proves the first two statements (for the second one we also use Lemma

1). To prove (10), we take any sequence (En)n≥2 of positive (large) numbers and

construct a slope a = [0; a1, 1, a3, 1, a5, 1, . . .] as in Example 2. We will show how to

choose a2k+1 for k ∈ N in order to get (10) for this (En)n≥2. We proceed as follows.

We take any a1 ∈ N+. We choose a2k+1 for k = 1, 2, 3, . . . by induction. When we

already have a1, . . . , a2k−1 for some k ≥ 1, then we also have a2 = · · · = a2k = 1

and the denominators of the convergents q1, . . . , q2k, and we define a2k+1 in order to

get |Pk+1|/|X2k| ≥ Ek+1. Because, according to Example 2 and Theorem 1, |Pk+1| =

q2k+1 = a2k+1q2k + q2k−1 and, from Theorem 5, |X2k| = q2k, we have |Pk+1|/|X2k| =

(a2k+1q2k + q2k−1)/q2k ≥ a2k+1, thus |Pk+1|/|X2k| ≥ Ek+1 if a2k+1 ≥ Ek+1, and we

can take for example a2k+1 = �Ek+1�. ��
Theorem 7 shows that the advantage of using our method rather than Shallit’s

(when forming prefixes of c(a) or s′(a) = 1c(a)) can be huge for the words with many
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1’s in the CF expansion of the slope. It is not only possible to get the advantage

we choose a priori, but we also get arbitrarily longer prefixes in step k compared to

Shallit’s prefixes in step 2k − 2 for each k ≥ 2.

A comparison between our method and the method of Venkov is contained in

Theorem 8 and Propositions 5 and 6. Theorem 8 is a Venkov counterpart of Propo-

sition 4 and Theorem 7. The statement (11) there is weaker than (12), but it is still

worth to be formulated. The reason is that we can reach the advantage formulated

in (11) already for slopes with only one CF element equal to 1. It is easy to find

slopes fulfilling (11).

Theorem 8. For each a ∈ ]0, 1[ \ Q we have |P1| = |C1| and |P2| ≥ |C1C2|. More-

over, for the methods from Theorems 3 and 4 we have the following:

∀ (En)n≥2 ∃ a ∈ ]0, 1[ \ Q ∀ k ≥ 2 |Pk| ≥ Ek · |C1 · · ·Ck|, (11)

∀ (En)n≥2 ∃ a ∈ ]0, 1[ \ Q ∀ k ≥ 2 |Pk| ≥ Ek · |C1 · · ·C2k−2|, (12)

where (En)n≥2 is any infinite sequence of positive (large) numbers, Pk is our kth

prefix of s′(a) = 1c(a) and C1 · · ·Ck is Venkov’s kth prefix of c(a).

Proof. For all a ∈ ]0, 1[ \ Q we have |P1| = a1 = |C1|. For k = 2 we always have

C1C2 = q1 + q2 and |P2| is equal, due to Corollary 1, to q2 + q1 if a2 	= 1 and to q3 if

a2 = 1. In the case when a2 = 1 we get |C1C2| = q1 + q2 ≤ a3q2 + q1 = q3 = |P2|.
To prove (11), we take any sequence (En)n≥2 of (large) positive numbers. We

will show how to construct a slope a = [0; a1, a2, . . .] fulfilling (11). The construction

will be by induction. We take any a1 ∈ N+ and a2 = 1. Because a2 = 1, then for

every k ≥ 2 we have ia(k + 1) ≥ k + 2. In the induction step, when we already have

defined a1, . . . , ak for some k ≥ 2, thus also have q1, . . . , qk, we define ak+1 in order to

get |Pk|/|C1 · · ·Ck| ≥ Ek. From Corollary 1 and Theorem 1, we have |Pk| ≥ |Sk| =

qia(k+1)−1 ≥ qk+1 = ak+1qk +qk−1 and, from Proposition 2, |C1 · · ·Ck| =
∑k

i=1 qi. This

means that |Pk|/|C1 · · ·Ck| ≥ (ak+1qk + qk−1)/
∑k

i=1 qi ≥ (ak+1qk)/(kqk) = ak+1/k,

and we get |Pk|/|C1 · · ·Ck| ≥ Ek for ak+1 ≥ kEk, so we take for example ak+1 =

�kEk�.
To prove (12), we take any sequence (En)n≥2 of (large) positive numbers. We

construct a slope a = [0; a1, 1, a3, 1, a5, 1, . . .] as in Example 2. We will show how

to choose a2k+1 for k ∈ N in order to get (12) for this (En)n≥2. We proceed as

follows. We take any a1 ∈ N+. We choose a2k+1 for k = 1, 2, 3, . . . by induction.

Let us say that we already have a1, . . . , a2k−1 for some k ≥ 1. Then we also have

a2 = · · · = a2k = 1 and the denominators q1, . . . , q2k, and we define a2k+1 in order

to get |Pk+1|/|C1 · · ·C2k| ≥ Ek+1. Because, according to Example 2 and Theorem 1,

|Pk+1| = q2k+1 = a2k+1q2k + q2k−1, and, from Proposition 2, |C1 · · ·C2k| =
∑2k

i=1 qi,

we get |Pk+1|/|C1 · · ·C2k| = (a2k+1q2k + q2k−1)/
∑2k

i=1 qi ≥ (a2k+1q2k)/(2kq2k) =

a2k+1/(2k), so |Pk+1|/|C1 · · ·C2k| ≥ Ek+1 if a2k+1 ≥ 2kEk+1. We can take for ex-

ample a2k+1 = �2kEk+1�. ��
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The quotients |Pk|/|C1 · · ·Ck| and |Pk|/|C1 · · ·C2k−2| can thus be arbitrarily

large. The strongest result is (12), but (11) is the easiest one to reach.

Proposition 4, Theorem 7 and 8 show that, if there are some 1’s in the CF

expansion of the slope, our method can generate the longest prefixes of all three

methods. The greater the number of 1’s in the expansion, the greater advantage

we get using our method. Because, from Def. 1, k ≤ ia(k) ≤ 2k − 2 for k ≥ 2 for

each a ∈ ]0, 1[ \Q, slopes as in Example 2 can probably give us the largest possible

advantage, depending on the choice of a2n+1 for n ∈ N+.

Also slopes a = [0; a1, a2, 1, a4, 1, a6, . . .] with a2 ≥ 2 give us a similar result. For

the lines with such slopes we have ia(k) = 2k − 3 and Pk = q2k−1 for k ≥ 3.

Proposition 5. Let a = [0; a1, a2, a3, a4, . . .], where an ≥ 2 for all n ≥ 2. Then

|P1| = |C1|, |P2| = |C1C2| and |Pk| < |C1 · · ·Ck| for each k ≥ 3, where Pk is our kth

prefix of s′(a) = 1c(a) and C1 · · ·Ck is Venkov’s kth prefix of c(a).

Proof. From Proposition 2 and Example 3. For k = 1 and k = 2 we have clearly the

above equality. If k ≥ 3, then |C1 · · ·Ck| = q1 + · · · + qk > qk−1 + qk ≥ |Pk|. ��
As we have seen in Proposition 5, it can easily happen that |C1 · · ·Ck| > |Pk|

for some a ∈ ]0, 1[ \Q and k ≥ 3. For the slopes as in Example 3, Venkov’s prefixes

for k ≥ 3 are longer than ours. It is not possible, though, to make the quotient

|C1 · · ·Ck|/|Pk| arbitrarily large, as it was in the opposite case (Theorem 8).

Proposition 6. Let a ∈ ]0, 1[ \ Q. Then |C1 · · ·Ck| < k · |Pk| for k ≥ 3, where Pk

is our kth prefix of s′(a) = 1c(a) and C1 · · ·Ck is Venkov’s kth prefix of c(a).

Proof. Let k ≥ 3. It follows from Proposition 2, Corollary 1, and the fact that

(qn)n∈N+ is strictly increasing, that |C1 · · ·Ck| =
∑k

i=1 qi < kqk ≤ k · |Pk|. ��
The quotient |C1 · · ·Ck|/|Pk| is thus bounded by k for each k ≥ 3.

6 Conclusions and Some Topics for Future Research

We have presented a run-hierarchical CF based description of upper mechanical

words s′(a) with slope a ∈ ]0, 1[ \Q and intercept 0. We expressed the length of the

prefixes obtained according to our method by the denominators of the convergents

of the CF expansion of the slope. This allowed us to compare our result with other

CF based methods (Venkov’s, Shallit’s) of forming such words. Due to the special

treatment of the CF elements equal to 1, our method gives often longer prefixes

after the same number of steps compared to the two other methods.

Our description uses an auxiliary function, the index jump function defined in

Def. 1, while the two other methods do not use any extra functions. However, the

index jump function is extremely simply constructed and computationally trivial.

Another possible drawback of the method could be that it uses more elements of

the CF expansion of the slope than the other methods, so the comparison might
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conceivably be thought of as being unfair. The run-hierarchical method presented in

this paper is not meant to replace the existing methods, it should rather be seen as

an additional possible method, which gives better results in some cases, as shown for

example in Theorems 7 and 8. Moreover, as the author showed in [9] with numerous

examples, in case of quadratic irrationals or even some transcendental numbers (like

for example n
√

e − 1 for n ≥ 2, e2−1
e2+1

), our method gives a compact description of all

the runs with the knowledge of the CF elements which form the period (or, in case

of the mentioned transcendental numbers, the knowledge of the periodic form of the

CF expansion) and then it does not matter any longer that we use CF elements with

a large index.

Corollary 1, together with Proposition 2 and Theorem 5, also shows that our

method is the only one of the three presented methods which reflects the hierarchy

of runs on all the levels. The run-hierarchical description enables us to analyze

abstract properties of lines (words), which has been discussed in another paper of

the author [10]. We have shown there how we can partition digital lines (upper

mechanical words) with slopes a ∈ ]0, 1[ \ Q into equivalence classes under two

equivalence relations defined by means of CFs, based on the description from [9].

Hopefully these partitions can help us gain a better understanding of digital lines

and maybe become a useful tool for combinatorics on words. Further work in this

field could involve a fixed point theorem for Sturmian words and how to find a

Sturmian word such that its letters are coding its own run hierarchical structure

as defined in the presented paper. Words like this could be called words with self-

balanced construction. It would be interesting to express the fixed points described

above in terms of generalized balances introduced by I. Fagnot and L. Vuillon in [1].
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We examine the influence of the elements of the continued fraction (CF) expansion of

irrational positive a less than 1 on the construction of runs in the digitization of the positive

half line y = ax or, equivalently, on the run-hierarchical structure of the upper mechanical

word with slope a and intercept 0. Special attention is given to the CF elements equal to 1.

We define two complementary equivalence relations on the set of slopes, based on their

CF expansions. A new description of digital lines is presented; we show how to define a

straight line or uppermechanicalwordby two sequences of positive integers fulfilling some

extra conditions. These equivalence relations and this new description enable us to analyze

the construction of digital lines and upper mechanical words. The analysis of suprema of

equivalence classes under one of these relations leads to a result which involves Fibonacci

numbers.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Combinatorics on words and digital geometry are two relatively new intensively growing areas of discrete mathematics.

The first one is about one hundred years old. According to Karhumäki [13], the 1906 paper by Axel Thue (1863–1922) on

repetition-free words is considered as a starting point of mathematical research on words; see also [18]. Digital geometry

is about fifty years old. Its origin is in computer graphics. The mathematical study of different properties of digital images

started in the early 1960s. Azriel Rosenfeld (1931–2004) made pioneering contributions to nearly every area of the field. He

wrote the first textbook on computer vision in 1969; see [9].

One of the problems both domains have in common is a description of characteristic words. It is equivalent to a

description of corresponding digital lines (with the same slope). This problem has received a lot of attention and has been

treated in many different ways, because it has its applications in numerous domains of science. As examples we can cite

mathematics (number theory, combinatorics on words, dynamical systems, digital geometry), computer science (e.g. digital

straightness), astronomy, and crystallography. Because of this diversity of applications, one can find the same, or very

closely related, problems under many different names, e.g., Beatty sequences, Sturmian words, trajectories of rotations,

upper (lower) mechanical words, Christoffel words, chain codes of a line, cutting sequences, billiard words; see [7,22,1].

The interdisciplinary character of results obtained in connection with different descriptions of characteristic words made
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Fig. 1. A CF description according to the hierarchy of runs.

it possible to define independently from digital geometry and combinatorics on words some of the concepts introduced by

the author; see [29], a submitted manuscript.

The history of the problem goes back to 1772, when astronomer Johan III Bernoulli applied the continued fraction (CF)

expansion of a to describe the sequence (�na�)n∈N+ for an irrational a. Some of many excellent sources of information

about different domains of science to which the result was applied, are [8] (section Concluding remarks and the list of

references, which includes even papers on quasicrystals), [24] (the bibliography which is probably complete at least up

to 1972, according to its author), [5,16].

The aimof the present paper is to discuss different aspects of the construction of digital lines and uppermechanicalwords

(Definition 2) with slope a ∈ ]0, 1[ \ Q and intercept 0 according to the hierarchy of runs, runs of runs, etc., as described in

[21]. Our approach is based on CFs and we perform only simple computations on integer numbers. The formulae we use, (6)

for digital lines and (9) for upper mechanical words, have been introduced in two earlier papers by the author.

The run-hierarchical description of lines (6) was first presented in [26]. In this paper and in [27], which is its extended

version, we can find references to many other CF-based methods of descriptions of digital lines.

In [28] the author introduced the run-hierarchical formula (9) for upper mechanical words. In the same paper we can

find a comparison of this method with two other CF-based descriptions of upper mechanical words. One of them is the one

formulated by Bernoulli in 1772, proven by Markov in 1882 and described in [32, p. 67], the second one is the one known as

method by standard sequences, which can be found in [22]. We have shown in [28] that the threemethods are different from

each other. In all of them one can express the length of generated prefixes by means of the denominators (q1, q2, . . .) of the
convergents of the CF-expansion of the slope a of upper mechanical (characteristic) word we describe, but we get different

lengths in each case. For Shallit’s method (by standard sequences) the nth generated prefix of c(a) has length |Xn| = qn,

for Venkov’s method |C1 · · · Cn| = q1 + · · · + qn, and for our method, the nth prefix Pn of the upper mechanical word

s′(a) = 1c(a) has a length qia(n) + qia(n)−1, qia(n)+1, qia(n), or qia(n)+1 + qia(n), depending on the parity of the value ia(n) of the
index jump function (Definition 1 in the present paper) at n and on whether aia(n) is equal to 1 or not; see Corollary 1 in [28].

This means that the hierarchy of runs in Venkov’s method and in the method by standard sequences is different from the

hierarchy of runs defined by Rosenfeld.

Fig. 1 illustrates the run-hierarchical construction of both digital lines as in (6) and upper mechanical words as in (9),

due to the equivalence which will be discussed in Section 2. The line segment run5(1) on Fig. 1 corresponds to the prefix P5
of upper mechanical words s′(a) for all such a that a = [0; 1, 2, 1, 1, 3, 1, 1, a8, a9, . . .], where a8, a9, . . . ∈ N+. Each black

square in the figure represents the letter 1 and each white square represents the letter 0 in the binary word s′(a).
An important issue in the present paper is to clarify the role of elements equal to 1 of the CF expansion of the slope

a ∈ ]0, 1[\Q in the run-hierarchical construction of the digitization of the line y = ax, equivalently, of the uppermechanical

word with slope a and intercept 0. In Section 3, which constitutes the first of the two main topics in this paper, we define

essential 1’s (Definition 6) as those 1’s of the CF expansion of the slope which have influence on the qualitative aspect of the

construction of lines (words). By qualitative aspect wemean that they determine the construction of digitization in terms of

long and short runs on all the digitization levels, i.e., how the runs are arranged. The essential 1’s cause the most frequently

appearing run on the level they decide about to be long; see Section 3.2. Other CF elements (meaning non-essential 1’s and

elements different from 1) take care of the quantitative aspect of the digitization only. By this we mean that they determine

the run length on each digitization level, i.e., how many runsk−1 form one runk for each k ≥ 2; see Section 3.1. The special
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treatment the essential 1’s get in our descriptionmakes our process of forming lines or words for some slopesmore efficient

than in the case of some other similar recursive formulae, as we have shown in [28].

We define two complementary equivalence relations on the set ]0, 1[ \ Q of slopes of digital half lines y = ax (or,

equivalently, of upper mechanical words). One of them is based on the idea of the sequence of length specification (see

Definition 3), the second one is defined by the alreadymentioned index jump function (Definition 1) and can be equivalently

defined by the sequence of the places of essential 1’s (Definitions 6 and 7, Proposition 8).

We consider the problemof existence of least and greatest elements in equivalence classes for both equivalence relations.

The solution is presented in Propositions 2 and 3 (for the relation based on the length of runs) and Theorem5 (for the relation

based on essential 1’s). Theorem 5 shows the connection between the classes defined by the sequences of the places of

essential 1’s and the Fibonacci numbers.

Another problem we solve in this paper is how to construct the slope of a straight line which has a digitization fulfilling

some a priori imposed conditions, in this case, given a short run length on the digitization level k for all k ∈ N+ (i.e., the

sequence of length specification) and the sequence of the places of essential 1’s. The solution of this problem is presented

as Theorem 6, which is a converse of Theorem 1. It shows, given the description of a digitization, how to compute the slope

of the digitized straight line, while Theorem 1 gives a description of the digitization for a given slope.

As we have stated earlier in this introduction, there exist many different CF-based descriptions for both digital lines and

characteristic words. Probably the most commonly used methods are the already mentioned method by Venkov and the

standard-sequences method. None of them reflects the run-hierarchical structure of words by analogy to the hierarchy of

runs as defined by Rosenfeld for digital lines. There are also other placeswherewe can find similar formulae, see for example

[11]. The method presented there is similar to ours, but it does not give any special attention to the CF elements equal to 1,

which causes the run-hierarchical structure not to be reflected either.

The method by standard sequences appears in many different places and forms in the literature. Some good sources to

consult about the subject are [22] and [17, pp. 75, 76, 104, 105]. On pages 104 and 105 in the latter we can find some exer-

cises which show the connections between bothmethods (the one by Shallit and the one by Venkov). In some places we can

see a very strong connection between themethod by standard sequences and the Stern–Brocot algorithm [12, pp. 116–123];

see for example [4,6]. In [4, p. 172] the connection between standardwords and Rauzy’s rules is presented. Compare also [10,

pp. 61–67] with [17, pp. 64–77] to see the similarity between the Stern–Brocot tree and the binary tree of standard pairs.

Bates et al. [3] show the link between Stern–Brocot tree and the Gauss map. Our method expressed by (6) and (9) was

derived from the method by digitization parameters introduced in [25], which, as shown in [27], are strongly connected to

the iterates of the Gauss map. However, in our method we modify the Gauss map each time when the value of the iterate is

larger than 1

2
, which corresponds to the special treatment which the essential 1’s get in our method.

None of CF-based descriptions of digital lines, even if some of them reflect the hierarchy of runs as defined by Rosenfeld,

gives a special attention to those CF elements of the slope which are equal to 1. Some indications concerning influence of

CF elements equal to 1 on the construction of digital lines can be found in the Ph.D. thesis of J.-P. Reveillès [20, p. 112],

however, his algorithm is written only for rational slopes and the question about the meaning of the CF elements equal to

1 is not treated there. Another place in the literature about digital lines which touches on the problem is the Ph.D. thesis of

P. Stephenson [23, chap. 4]. He does not formulate the question either. The author’s papers [26–28] and the present paper are

probably the only placeswhere the question about the role of the CF elements equal to 1 in the run-hierarchical construction

of digital lines is both formulated and thoroughly answered.

2. Digital lines and upper mechanical words

We discuss the digitization of the positive half lines y = ax where a ∈ ]0, 1[ is irrational. The standard Rosenfeld digiti-

zation (R-digitization) is replaced by the R′-digitization. The modification is very simple and is basically a vertical shift of

the grid by − 1

2
(see Fig. 2; the R′-cross in (k, n), denoted CR′(k, n), is shown there). This results in the following arithmetical

description of the digital positive half line lwith equation y = ax as a subset of Z2 (Fig. 3):

DR′(l) = {(k, n) ∈ (N+)2; l ∩ CR′(k, n) 	= ∅} = {(k, �ak�); k ∈ N+}. (1)

In [26] we presented a description of the construction of digital lines in terms of CFs. In the present paper wewill use this

description to define two equivalence relations on the set of slopes a ∈ ]0, 1[ \ Q of all the digital lines y = ax. The results

hold also for a kind of binary words, namely for upper mechanical words with slope a and intercept 0 (see Definition 2). This

will be shown later in this section.

From now on we assume that the simple CF expansion of a ∈ ]0, 1[ \Q is given, expressed as a = [0; a1, a2, a3, . . .], and
we know the positive integers ak for all k ∈ N+. These are called the elements of the CF. We recall that

[a0; a1, a2, a3, . . .] = a0 + 1

a1 + 1

a2 + 1

a3 + · · ·

. (2)

In our case, when a ∈ ]0, 1[ \ Q, we have a0 = �a� = 0 and the sequence of the CF elements (a1, a2, . . .) is infinite.
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Fig. 2. A comparison between the R-digitization and the R′-digitization.

We call [a0; a1, a2, . . . , an], for each n ∈ N, the nth convergent of the CF [a0; a1, a2, . . .]. If we define

p0 = a0, p1 = a1a0 + 1, pn = anpn−1 + pn−2 for n ≥ 2 (3)

and

q0 = 1, q1 = a1, qn = anqn−1 + qn−2 for n ≥ 2, (4)

then

[a0; a1, a2, . . . , an] = pn

qn
for n ∈ N . (5)

All convergents are irreducible [e.g. 14, p. 12]. For more information about CFs see [14].

Our description from [26] was based on our earlier description by digitization parameters from [25] and the following

index jump function.

Definition 1. If a ∈ ]0, 1[ \ Q and a = [0; a1, a2, . . .], then the index jump function ia : N+ → N+ is defined by ia(1) = 1,
ia(2) = 2 and, for k ≥ 2,

ia(k + 1) = ia(k) + 1 + δ1(aia(k)),

where δ1(x) =
{
1, x = 1

0, x 	= 1.

Our description of the digitization of y = ax for a ∈ ]0, 1[ \ Q reflects the hierarchy of runs on all the digitization levels.

The term runwas already introduced by Azriel Rosenfeld [21, p. 1265]. For a formal definition of runs and for the definition

of the R′-digitization see [25].

We call runk(j) for k, j ∈ N+ a run of digitization level k. We use the notation runk or in plural runsk, meaning runk(j) for
some j ∈ N+, or, respectively, {runk(i); i ∈ I} where I ∈ P (N+). We also define the length of runk(j) (denoted ‖runk(j)‖) as
its cardinality, i.e., the number of runsk−1 contained in it (for k = 1 it is length in the usual meaning).

Each run1(j) can be identified with a following horizontal subset of Z2: {(i0 + 1, j), (i0 + 2, j), . . . , (i0 + m, j)}, wherem

is the length of the run. For each a ∈ ]0, 1[ \ Q we have only two possible run lengths:
⌊

1

a

⌋
and

⌊
1

a

⌋ + 1. All the runs with

one of those lengths always occur alone, i.e., do not have any neighbors of the same length in the sequence (run1(j))j∈N+ ,
while the runs of the other length can appear in sequences.

On each level k for k ≥ 2 we have short runs (Sk) and long runs (Lk), which are composed of the runs of level k − 1. Only

one type of runsk−1 (short or long) can appear in sequences, the second type always occurs singly. The first run on level

k − 1 is the run beginning in (1, 1) and will be referred to as runk−1(1). Each runk(j) is composed of a single runk−1 (in the

beginning or at the end of the runk(j)) and the maximal number (call it m) of main runsk−1 between this single runk−1 and

the next single one (or the previous one if the runk(j) ends with the single runk−1). Then ‖runk(j)‖ = m + 1.

We use the notation Smk Lk, LkS
m
k , Lmk Sk and SkL

m
k , when describing the form of digitization runsk+1. For example, Smk Lk means

that the runk+1 we consider consists ofm short runsk (Sk) and one long runk (Lk) in this order, so it is a runk+1 with the most

frequent element short. The length of such a runk+1, being its cardinality, i.e., the number of runsk contained in it, is then

equal tom + 1. We will also use the notation ‖Sk+1‖ and ‖Lk+1‖ for the length of the short resp. long runsk+1. We recall the

following theorem describing the digital lines with slope a ∈ ]0, 1[\Q in terms of CFs. This theorem formed our main result

in [26].
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Fig. 3. An R′-digital line y = axwith irrational slope and the corresponding s′(a).

Theorem 1 ([26]; Description by CFs). Let a be irrational and a = [0; a1, a2, . . .]. For the digital straight line with equation

y = ax, we have ‖S1‖ = a1, ‖L1‖ = a1 + 1, and the forms of runsk (form_runk) for k ≥ 2 are as follows:

form_runk =

⎧⎪⎨
⎪⎩
Smk−1Lk−1 if aia(k) 	= 1 and ia(k) is even

Sk−1L
m
k−1 if aia(k) = 1 and ia(k) is even

Lk−1S
m
k−1 if aia(k) 	= 1 and ia(k) is odd

Lmk−1Sk−1 if aia(k) = 1 and ia(k) is odd ,

(6)

where m = bk − 1 if the runk is short and m = bk if the runk is long. The function ia is defined in Definition 1

and bk = aia(k) + δ1(aia(k))aia(k)+1.

In [28] we derived a recursive CF description of upper mechanical words from Theorem 1. Let us first recall the definition

of those [17, p. 53]:

Definition 2. Given two real numbers α and ρ with 0 ≤ α ≤ 1, we define two infinite words sα,ρ : N → {0, 1} and
s′α,ρ : N → {0, 1} by

sα,ρ(n) = �α(n + 1) + ρ� − �αn + ρ�, s′α,ρ(n) = �α(n + 1) + ρ� − �αn + ρ�.
The word sα,ρ is the lower mechanical word and s′α,ρ is the upper mechanical word with slope α and intercept ρ. A lower or

upper mechanical word is irrational or rational according to whether its slope is irrational or rational.

In the present paper we deal with the special case when α ∈ ]0, 1[ is irrational and ρ = 0. In this case we will denote

the lower and upper mechanical words by s = s(α) and s′ = s′(α) respectively. We have s0 = s0(α) = �α� = 0 and

s′0 = s′0(α) = �α� = 1 and, because �x� − �x� = 1 for non-integer x and �x� − �x� = 0 only for integers, we have

s = s(α) = 0c(α), s′ = s′(α) = 1c(α) (7)

(meaning 0, resp. 1 concatenated to c(α)). The word c(α) is called the characteristic word of α. For each α ∈ ]0, 1[ \ Q, the
characteristic word associated with α is thus the following infinite word c = c(α) : N+ → {0, 1}:

cn = �α(n + 1)� − �αn� = �α(n + 1)� − �αn�, n ∈ N+. (8)

The connection between characteristicwords and digital lines is awell-known fact. See for example [17, 2.1.2.Mechanical

words, rotations], [19, chap. 6. Sturmian Sequences] or [15]. In [25] we remarked that the R′-digitization of a line with

equation y = ax, where a ∈ ]0, 1[ \ Q and x > 0, is the subset of Z2 defined by (1). Due to (1), (7) and (8), the sequence

s′0 = 1, s′n = �(n + 1)a� − �na� for n ∈ N+ describes the R′-digitization of the positive half line y = ax.

Fig. 3 illustrates the correspondence between R′-digital lines and upper and lower mechanical and characteristic words

for a ∈ ]0, 1[ \ Q.
For any a ∈ ]0, 1[ \ Q, the upper mechanical word s′(a), as defined in Definition 2, describes completely the digitization

of the positive half line y = ax and we get the following description of upper mechanical words. Because we have (7), our

results will give a description of both mechanical and characteristic words.

Theorem 2 ([28]; Upper Mechanical Words by CFs). Let a ∈ ]0, 1[ \ Q and a = [0; a1, a2, . . .]. If s′(a) is the upper mechanical

word with slope a and intercept 0 as defined in Definition 2, then s′(a) = limk→∞ Pk, where P1 = S1 = 10a1−1, L1 = 10a1 , and,

for k ≥ 2,

Pk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Lk = S

aia(k)

k−1 Lk−1 if aia(k) 	= 1 and ia(k) is even

Sk = Sk−1L
aia(k)+1

k−1 if aia(k) = 1 and ia(k) is even

Sk = Lk−1S
−1+aia(k)

k−1 if aia(k) 	= 1 and ia(k) is odd

Lk = L
1+aia(k)+1

k−1 Sk−1 if aia(k) = 1 and ia(k) is odd,

(9)
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where the function ia is defined in Definition 1. The meaning of the symbols is the following: for k ≥ 1, Pk - Prefix number k,

Sk - Short runk and Lk - Long runk. To make the recursive formula (9) complete, we add that for each k ≥ 2, if Pk = Sk, then Lk
is defined in the same way as Sk, with the only difference that the exponent defined by aia(k) (or by aia(k)+1) is increased by 1. If

Pk = Lk, then Sk is defined in the same way as Lk, with the only difference that the exponent defined by aia(k) (or by aia(k)+1) is

decreased by 1.

We have described in [28] the upper mechanical words s′(a) with slope a ∈ ]0, 1[ \ Q and intercept 0 by an increasing

sequence of prefixes (Pk)k∈N+ . Moreover, the prefix Pk for each k ∈ N+ corresponds to the first run of level k in the digitization

of y = ax, thus we can write Pk = runk(1). This description of words according to the hierarchy of runs on all the levels (i.e.,

runsn for all n ∈ N+) can be helpful for understanding their construction and allows us to define equivalence relations on

the set of upper mechanical words with slope a ∈ ]0, 1[ \ Q and intercept 0. This will be done in Section 3.

Another important fact about characteristic words, which will be used in the sequel, is the following [17, p. 62,

Lemma 2.1.21.]:

Theorem 3. For any a, a′ ∈ ]0, 1[ \ Q, if c(a) = c(a′), then a = a′.

If the R′-digitization of y = a′x is equal to the R′-digitization of y = ax for some a′, a ∈ ]0, 1[ \ Q, then a′ = a.

3. Main topic I: Two equivalence relations on the set of slopes

The description of digital lines in terms of CFs presented in Theorem 1 gives us possibilities of classifications of digital

half lines y = ax (where a ∈ ]0, 1[ \ Q and x > 0), or, equivalently, of upper mechanical words s′(a) with slope a and

intercept 0 (Theorem 2). In this section we will define two equivalence relations on the set of slopes.

3.1. Partition defined by the sequences of length specification

Before we define the equivalence relation based on the sequences of short run length on all the digitization levels, we

recall the following theorem, which, in a slightly different form, we already formulated in [25].

Theorem 4. Let n ∈ N+. For each sequence of natural numbers (b1, b2, . . . , bn) such that b1 ≥ 1 and bi ≥ 2 for 2 ≤ i ≤ n,

one can form Sn (the short digitization run on level n) of all the possible lines y = ax (equivalently, upper mechanical word with

irrational slope and intercept 0) with ‖Sk‖ = bk for k = 1, . . . , n, in exactly m ways, where

m =
{
2n−1 if bn 	= 2

2n−2 if bn = 2 .

The digitizations of all these lines thus fulfill the following condition:

for i = 1, . . . , n, the short run’s length on digitization level i is bi.

Proof. This follows from Theorem 1. The combinatorial idea behind the proof is the following. All the slopes we consider

are of the form [0; b1, c2, . . . , ck] for some k such that n ≤ k ≤ 2n − 1, where for each i ∈ [2, k]Z we have ci = 1 (then,

if i ≤ k − 1, ci+1 = bs − 1 for some s ∈ [2, n]Z), ci = br − 1 for some r ∈ [2, n]Z (if i ≥ 3 and ci−1 = 1), or ci = bp for

some p ∈ [2, n]Z. The problem to solve is thus: in how many ways can we choose which bq for q ∈ [2, n]Z we split into two

elements of CF (into 1 and bq − 1)? Any set with n− 1 elements has 2n−1 different subsets, so 2n−1 is our answer in general.

The exceptions are all the sequences of length specification with bn = 2, because [0; a1, . . . , al, 1, 1] = [0; a1, . . . , al, 2]
for all sequences (aj)j∈[1,l]Z . For the sequences (b1, . . . , bn) with bn = 2 we get only 2n−2 possible forms of S4. �

Later in this paper we will formulate a more general theorem (Theorem 6).

Let us consider the following example.

Example 1. Wewill find all the possible forms of S4 (short run4) for all the lines with the following first four elements of the

sequence of short run length: (b1, b2, b3, b4) = (1, 2, 2, 3). This means that the short run length on level 1 is 1, on level 2 is

2, on level 3 is 2 and on level 4 is 3. Following the construction given in the proof of Theorem 4, we get 8 = 24−1 possible

forms of S4, described by the fourth, fifth, sixth or seventh convergents of the possible slopes, depending on the number of

bi split into 1 and bi − 1 in the part of the CF expansion of the slope describing the first four digitization levels:

(a) p
(a)
4 /q

(a)
4 = [0; b1, b2, b3, b4] = [0; 1, 2, 2, 3] = 17

24

S4 = S23L3 = (L2S2)
2(L2S

2
2) = [(S21L1)(S1L1)]2(S21L1)(S1L1)2

(b) p
(b)
5 /q

(b)
5 = [0; b1, 1, b2 − 1, b3, b4] = [0; 1, 1, 1, 2, 3] = 17

27

S4 = L3S
2
3 = (S22L2)(S2L2)

2 = (S1L1)
2(S1L

2
1)[(S1L1)(S1L21)]2

(c) p
(c)
5 /q

(c)
5 = [0; b1, b2, 1, b3 − 1, b4] = [0; 1, 2, 1, 1, 3] = 18

25

S4 = L3S
2
3 = (L22S2)(L2S2)

2 = (S21L1)
2(S1L1)[(S21L1)(S1L1)]2
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Fig. 4. Example 1. The 8 possible forms of S4 with the length specification (1, 2, 2, 3).

(d) p
(d)
6 /q

(d)
6 = [0; b1, 1, b2 − 1, 1, b3 − 1, b4] = [0; 1, 1, 1, 1, 1, 3] = 18

29

S4 = S23L3 = (S2L2)
2(S2L

2
2) = [(S1L1)(S1L21)]2(S1L1)(S1L21)2

(e) p
(e)
5 /q

(e)
5 = [0; b1, b2, b3, 1, b4 − 1] = [0; 1, 2, 2, 1, 2] = 19

27

S4 = S3L
2
3 = (L2S2)(L2S

2
2)

2 = (S21L1)(S1L1)[(S21L1)(S1L1)2]2

(f) p
(f )
6 /q

(f )
6 = [0; b1, 1, b2 − 1, b3, 1, b4 − 1] = [0; 1, 1, 1, 2, 1, 2] = 19

30

S4 = L23S3 = (S22L2)
2(S2L2) = [(S1L1)2(S1L21)]2(S1L1)(S1L21)

(g) p
(g)
6 /q

(g)
6 = [0; b1, b2, 1, b3 − 1, 1, b4 − 1] = [0; 1, 2, 1, 1, 1, 2] = 21

29

- gives the max slope (cf. Proposition 3); the 0’s and 1’s as on the picture:

S4 = L23S3 = (L22S2)
2(L2S2) = [(S21L1)2(S1L1)]2(S21L1)(S1L1) =

[(1210)2(110)]2(1210)(110) = 11101110110111011101101110110

(h) p
(h)
7 /q

(h)
7 = [0; b1, 1, b2 − 1, 1, b3 − 1, 1, b4 − 1] = [0; 1, 1, 1, 1, 1, 1, 2] = 21

34

- gives the min slope (cf. Proposition 2)

S4 = S3L
2
3 = (S2L2)(S2L

2
2)

2 = (S1L1)(S1L
2
1)[(S1L1)(S1L21)2]2.

All the possible forms of S4 for all the lines with the four first elements of the corresponding sequence of short run length

being 1, 2, 2 and 3 are shown on Fig. 4. To put stress on the equivalence between the descriptions of digital lines and upper

mechanical words, we placed in the picture 0’s and 1’s forming the word corresponding to the S4 of one of the lines (g). The

lines are arranged in decreasing order of slopes, the line g has the largest slope, h the least one.

We are going to define an equivalence relation based on quantitative features of digital lines. We will identify all the

lines with the same run length (cardinalities of runs) on all the digitization levels. To get there, we formulate the following

definition.

Definition 3. For any irrational a = [0; a1, a2, . . .], the sequence (bn)n∈N+ , where b1 = a1 and bk = aia(k) + δ1(aia(k))aia(k)+1

for k ≥ 2 and the function ia : N+ → N+ is defined in Definition 1, will be called the sequence of length specification of the

digital straight line y = ax (equivalently, of the upper mechanical word with slope a and intercept 0).

These sequences will be used to partition the set of all the digital lines y = ax (upper mechanical words) with irrational

slopes a ∈ ]0, 1[ into classes. We can unify all the lines with the same sequence of length specification in an equivalence

class under the following relation.

Definition 4 (Quantitative Identification; by Run-length). We define the following relation ∼len⊂ (]0, 1[ \ Q)2: if
a, a′ ∈ ]0, 1[ \ Q, then

a ∼len a′ ⇔ ∀n ∈ N+ b(a)
n = b(a′)

n ,

where

(
b

(a)
n ; n ∈ N+

)
and

(
b

(a′)
n ; n ∈ N+

)
are the corresponding sequences of length specification in the digitization of

the lines y = ax and y = a′x respectively (equivalently, in the run-hierarchical construction of s′(a) and s′(a′)).

The classification above is based on the short run length on each digitization level. Each digital line y = ax generates its

sequence of length specification. The motivation for the name of the sequence we can find in Theorem 1.

It is clear from Definition 3 that, for each a ∈ ]0, 1[ \ Q, the sequence of length specification corresponding to a has the

following properties: b1 ∈ N+ and, for n ≥ 2, bn ≥ 2. The opposite is also true: all infinite sequences of natural numbers
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greater than or equal to 2 (and the first element possibly equal to 1) generate the digitization of some lines with short run

lengths on each level defined by the elements of the sequence. This means that each sequence (bn)n∈N+ where b1 ≥ 1 and

bi ≥ 2 for all i ≥ 2 is the sequence of length specification for some a ∈ ]0, 1[ \ Q, so it defines one equivalence class in

the set of all digital lines y = ax. How to find the elements of the class, is shown in Theorems 4 and 6 and illustrated with

Example 1.

It follows from Theorem 4 when we let n go to infinity that, for each infinite sequence (bn)n∈N+ such that b1 ∈ N+ and

bi ≥ 2 for i ≥ 2, the class under ∼len generated by this sequence has a cardinality of 2ℵ0 , thus of the continuum.

This classification is very easy to dowhenworkingwith CF expansions of the slopes instead of the slopes as real numbers.

It involves only the CF expansion of the slope, forming the sequence of length specification (Definition 3) and a comparison

of integers.

Remark 1. All the lines contained in the same equivalence class under ∼len have different index jump functions (see Theo-

rem 6) — if there were two lines with the same index jump function, they would have identical digitization, thus, according

to Theorem 3, they would be the same line.

To be able to formulate some propositions about equivalence classes under ∼len, we have to know how to compare two

CFs with each other.

Proposition 1.

[a0; a1, a2, . . .] < [b0; b1, b2, . . .] ⇔ (a0, −a1, a2, −a3, a4, −a5, . . .)
lexic.
< (b0, −b1, b2, −b3, b4, −b5, . . .).

The second inequality is according to the lexicographical order on sequences.

Proposition 2. For any sequence (a2i+1)i∈N of positive integers, the line with the slope [0; a1, 1, a3, 1, a5, 1, a7, 1, . . .] has the
least slope compared to all the other lines in its equivalence class under ∼len.

Proof. According to Definition 3, the line with such a slope belongs to the class defined by (bn)n∈N+ = (a1, 1 + a3, 1 +
a5, 1 + a7, . . .). It follows from Proposition 1, that [0; a1, 1, a3, 1, a5, 1, a7, 1, . . .] < [0; a1, 1 + a3, 1 + a5, 1 + a7, . . .],
because the first difference between the elements occurs on a place with an even number and a2 = 1 < 1 + a3, because

a3 ≥ 1. Generally, for any line belonging to the equivalence class defined by (bn)n∈N+ , the first difference between the

elements of [0; a1, 1, a3, 1, a5, 1, a7, 1, . . .] and the elements of the CF expansion of the slope of this line occurs on a place

with an even number, because it is preceded by a1 which always remains unchanged for all the lines from the class and a

number of pairs (1, ai) of the elements which are the same as for [0; a1, 1, a3, 1, a5, 1, a7, 1, . . .]. This means that the first

difference between the elements of the CF expansions of the slopes will occur on an even place and it will give the inequality

a2i = 1 < 1 + a2i+1 for some i ∈ N+. The first difference between the CF elements on the place with an even index has the

same inequality as the inequality between the CFs, so a2i = 1 < 1 + a2i+1 implies

[0; a1, 1, a3, . . . , 1, a2i−1, 1, a2i+1, 1, a2i+3, . . .] < [0; a1, 1, a3, . . . , 1, a2i−1, 1 + a2i+1, . . .].
The proof is thus complete. �

Proposition 3. For any a1 ∈ N+ and any sequence (a2i)i∈N+ of positive integers such that a2 ≥ 2, the line with the slope

[0; a1, a2, 1, a4, 1, a6, 1, . . .] has the largest slope in its equivalence class under ∼len.

Proof. The equivalence class of the line with such a slope is defined by the sequence (bn)n∈N+ = (a1, a2, 1+a4, 1+a6, . . .).
Let us take any other line belonging to the same class. If this line has slope [0; a1, 1, a2 − 1, . . .], it is clearly a slope which is

less than the slope defined in the statement of the proposition. If the slope is [0; a1, a2, . . .], thenwe use analogous reasoning

as in the proof of Proposition 2 and say that the first difference between the elements of the CF expansion of this slope and

the slope which is supposed to be maximal occurs on a place with an odd number. According to Proposition 1, the first

difference on an odd place gives the opposite direction of the inequality between the CFs compared to the inequality on the

elements on this place. For the slopes defined in the text of the proposition, all a2i+1 for i ∈ N+ are equal to 1, they are thus

minimal, which makes the slopes maximal. �

To summarize, each equivalence class defined by a sequence (bn)n∈N+ , where b1 ∈ N+ and bi ≥ 2 for i ≥ 2, has both

least and largest elements, being [0; b1, 1, bn − 1]∞n=2 and [0; b1, b2, 1, bn − 1]∞n=3 respectively.

3.2. Partition defined by the index jump function

In this sectionwewill present another partition of digital lines into classes. This partitionwill have a qualitative character.

We will identify lines with the same construction (in terms of long and short runs) on all the levels.

As we can see in Theorems 1 and 2, some elements equal to 1 of the CF expansion of the slope play an important role in

the construction of the digitization runs. Analyzing (6) in Theorem 1 we observe that for each level k − 1, where k ≥ 2, the

short run Sk−1 is the most frequent one if aia(k) 	= 1. In the opposite case, when aia(k) = 1, the most frequent one is the long

run Lk−1.
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The parity of the index jump function decides only about the starting point in (1, 1), not about the essential form of the

digitization as a sequence of runs on all the digitization levels. The most important factor for the construction is this if aia(k)
is equal to 1 or different from 1. This gives the qualitative description of runs. FromDefinition 1we can see that the places of

CF elements equal to 1 determine the index jump function. This is the reasonwhywe define the second equivalence relation

on the set of slopes in the following way.

Definition 5 (Qualitative Identification; by Run-Construction). We define the following relation ∼con⊂ (]0, 1[ \ Q)2. If
a, a′ ∈ ]0, 1[ \ Q , then

a ∼con a′ ⇔ ia = ia′ ,

where ia and ia′ are the corresponding index jump functions in digitization of the lines y = ax and y = a′x respectively.

The relation∼con is defined on the set of slopes ]0, 1[\Q, i.e., it also partitions the set of all upper mechanical words with

slope a ∈ ]0, 1[ \ Q and intercept 0. It is clearly an equivalence relation. The following proposition justifies the name of the

relation ∼con. It follows immediately from Theorem 1.

Proposition 4. If a ∼con a′, then the digitization runs of the lines y = ax and y = a′x have exactly the same construction (with

respect to short and long runs) for all the digitization levels, only run lengths can be different.

In (6) we can see that this construction depends on the places of some elements equal to 1 in the CF expansion of the

slope. We will call those elements essential 1’s. Then we will describe which of the CF elements equal to 1 decide about the

construction of runs on the level they correspond to, i.e., which 1’s are essential (Propositions 5 and 6).

Definition 6. Let a ∈ ]0, 1[ \ Q and a = [0; a1, a2, a3, . . .]. Then
ak is an essential 1 ⇔ [ ak = 1 ∧ ∃m ≥ 2, k = ia(m) ].

In Proposition 5 we will show that, if a is irrational and a = [0; a1, a2, . . .], then only the ak = 1 (k > 1) which are directly

preceded by an even number (0, 2, 4, . . .) of consecutive 1’s (also with an index greater than 1) are essential.

We will now formulate a definition which we need for the proof of Theorem 5 and for the description of digital lines

presented in Section 4.

Definition 7. Let a = [0; a1, a2, . . .] be irrational. Let J = ∅ if there are no 1’s in the CF expansion of a (except maybe

for a1), J = N+ if there are infinitely many 1’s in the CF expansion of a and J = [1,M]Z for some M ∈ N+ if there are M

essential 1’s in the CF expansion of a. The following sequence (sj)j∈J : s1 = min{k ∈ N+; ak is essential}, and, for n ∈ J \ {1},
sn = min{k > sn−1; ak is essential} (and (si)i∈∅ = ∅ in case J = ∅) we will call the sequence of the places of essential 1’s in

the CF expansion of a.

Proposition 5. Let a = [0; a1, a2, . . .] be irrational and let the interval J be as in Definition 7. The sequence of the places of

essential 1’s in the CF expansion of a is (sj)j∈J , where s1 = min{k ≥ 2; ak = 1} and, for n ∈ J \ {1},
sn = min{k ≥ sn−1 + 2; ak = 1}.

Proof. This follows from Definitions 1, 6 and 7. From Definition 1 we get the following equivalence. For m ≥ 2

aia(m) = 1 ⇔ ia(m + 1) = ia(m) + 2 ⇔ ia(m) + 1 /∈ {ia(n)}n∈N+ . (10)

Sequence (ia(n))n∈N+ is thus strictly increasing and the difference between each of its two consecutive elements is equal to

1 or to 2.

From (10) one can see that ak is an essential 1 if and only if ak = 1 (k ≥ 2) and the number k + 1 = ia(m) + 1 does

not belong to the sequence (ia(n))n∈N+ , so (sj)j∈J as defined in Definition 7 is strictly increasing and the difference between

each of its two consecutive elements is at least 2. Moreover, according to Definitions 1 and 6, the index of each essential 1

is greater than or equal to 2. �

Proposition 6. Let a = [0; a1, a2, . . .] be irrational. Then none of asm+1 = 1 for any m ∈ J is essential.

Proof. It follows from (10) that (ia(k))k∈N+ = N+ \ (sm + 1)m∈J , thus, according to Definition 6, all the asm+1 = 1 form ∈ J

are non-essential 1’s. �

Each a ∈ ]0, 1[\Q generates the index jump function ia, which generates the sequence of the places of important 1’s. Each

sequence of important 1’s has some properties, whichwill be formulated in the following proposition.Wewill show that the

opposite is also true, i.e., that each sequence with these properties is a sequence of the essential 1’s for some a ∈ ]0, 1[ \ Q.

Proposition 7. Let a = [0; a1, a2, . . .] be irrational. The corresponding sequence (sj)j∈J of the places of essential 1’s in the CF

expansion of a has the following properties:

• the set J is as follows: J = ∅, J = N+ or J = [1,M]Z for some M ∈ N+, depending on the number of essential 1’s in the CF

expansion of a.

• the sequence (sj)j∈J is a sequence of positive integers such that s1 ≥ 2 and, for k ∈ J \ {1}, sk − sk−1 ≥ 2.
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The opposite is also true, i.e., each sequence (sj)j∈J of positive integers, where J is any index set such that J = ∅, J = N+ or

J = [1,M] for some M ∈ N+ and s1 ≥ 2 and, for k ∈ J \ {1}, sk − sk−1 ≥ 2, is a sequence of the places of essential 1’s for some

a ∈ ]0, 1[ \ Q.

Proof. The first part of the statement follows from Proposition 5. The second part we will prove in Theorem 6. �

Because it is easier to use the sequences of the places of essential 1’s than the index jump function, we will formulate the

following proposition.

Proposition 8. If a, a′ ∈ ]0, 1[ \ Q , then a ∼con a′ iff their corresponding sequences of the places of important 1’s are equal to

each other, i.e.,

a ∼con a′ ⇔
(
s
(a)
j

)
j∈J

=
(
s
(a′)
k

)
k∈J ′

.

Proof. From Definitions 6 and 7 we can see that the sequences of the places of essential 1’s in the CF expansion of a

are defined by the index jump function corresponding to a, so, if ia = ia′ , then
(
s
(a)
j

)
j∈J

=
(
s
(a′)
k

)
k∈J ′

, which proves the

implication from the left to the right.

Let us now assume that a and a′ have the same sequences of the places of essential 1’s. We will show that their index

jump functions are also equal to each other.Wewill show that, for each a, the index jump function can be expressed in terms

of the sequence of the places of important 1’s. Let us consider the following function fa : N+ → N+, where a ∈ ]0, 1[ \ Q
and (sj)j∈J is the corresponding sequence of essential 1’s:

fa(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k, 1 ≤ k ≤ s1,
k + 1, s1 + 1 ≤ k ≤ s2 − 1,
k + 2, s2 ≤ k ≤ s3 − 2,
k + 3, s3 − 1 ≤ k ≤ s4 − 3,
...

...
k + m − 1, sm−1 − (m − 3) ≤ k ≤ sm − (m − 1),
k + m, sm − (m − 2) ≤ k ≤ sm+1 − m.
...

...

(11)

If J = ∅, the formula will be reduced to the first line, i.e., fa(k) = k for all k ≥ 1. If J = [1,M]Z, the formula will consist of

the firstM + 1 lines, the last one will describe the values of fa(k) for k ≥ sM − M + 2. It follows from Proposition 7 that we

have for the function defined by (11):

• fa(1) = 1, fa(2) = 2 (because s1 ≥ 2),

• for all the intervals Im = [sm − (m − 2), sm+1 − m]Z we have sm+1 − m − [sm − (m − 2)] = sm+1 − sm − 2 ≥ 0, and,

moreover, p, p + 1 ∈ Im ⇒ fa(p + 1) − fa(p) = 1,

• for eachm for which the expressions make sense, we have fa(sm − (m − 1)) = sm − (m − 1) + m − 1 = sm and, for the

next value of the argument, we have fa(sm − (m − 2)) = sm − (m − 2) + m = sm + 2. This means that fa jumps over the

value sm + 1 for eachm ∈ J .

The function fa as defined in (11) and the index jump function ia corresponding to a have the same value for n = 1, are both

increasing on N+ and (fa(k))k∈N+ = N+ \ (sm + 1)m∈J , they have thus the same set of values on N+. This means that fa ≡ ia.

The index jump function can thus be expressed by the sequence of the places of essential 1’s, which proves the implication

from the right to the left. �

We have just shown that one can identify index jump functions with the corresponding sequences of essential 1’s. This

means that the equivalence classes under ∼con can also be defined by sequences as described in Proposition 7.

Let us consider the following examples.

Example 2. Let us consider the slopes with the first CF elements as on Fig. 1. We present an illustration of the forming of

the index jump function for those slopes. If a = [0; a1, a2, . . .], where ak ≥ 2 for k = 2, 5, 8, 9, 11, 12, 16, 17, then the

index jump function ia is formed as follows:

a = [0;b11, b2
a2,

b3︷︸︸︷
1, 1,

b4
a5,

b5︷︸︸︷
1, 1,

b6
a8,

b7
a9,

b8︷ ︸︸ ︷
1, a11,

b9
a12,

b10︷︸︸︷
1, 1,

b11︷ ︸︸ ︷
1, a16,

b12
a17, . . .]

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ . . .
(ia(k))k∈N+= ( 1, 2, 3, 5, 6, 8, 9, 10, 12, 13, 15, 17, . . .)

In the last row we presented the first twelve elements of the sequence of the values of the index jump function for

these a, so (ia(k))1≤k≤12. The essential 1’s are underlined in the first row. The sequence of the places of essential 1’s is

(sj)j∈J = (3, 6, 10, 13, 15, . . .). The non-essential 1’s are a1, a4, a7, a14. We have also illustrated the sequence of length

specification for these slopes. It is (bn)n∈N+ = (1, a2, 1 + 1, a5, 1 + 1, a8, a9, 1 + a11, a12, 1 + 1, 1 + a16, a17, . . .).
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Example 3. Let a = [0; a1, a2, . . .], where a1 ∈ N+ and an ≥ 2 for all n ≥ 2. Then we have ia(k) = k for each k ∈ N+ and

bk = ak for all k ∈ N+. This means, according to Theorem 1, that for all such lines y = axwe get the following description of

the digitization: ‖S1‖ = a1, ‖L1‖ = a1 + 1; for k ∈ N+: S2k = S
a2k−1

2k−1 L2k−1, L2k = S
a2k
2k−1L2k−1, S2k+1 = L2kS

a2k+1−1

2k , L2k+1 =
L2kS

a2k+1

2k . This pattern is valid for all the slopes without any 1’s (except possibly for a1) in the CF expansion. The sequence of

the places of essential 1’s is (sn)n∈∅ = ∅.
Example 4. Let a = [0; a1, 1, a3, 1, a5, 1, . . .], where a2n+1 ∈ N+ for all n ∈ N (cf. Proposition 2). Then we have ia(1) = 1

and b1 = a1. For k ≥ 2 we have ia(k) = 2k − 2 and bk = a2k−2 + a2k−1 = a2k−1 + 1. The digitization is thus: ‖S1‖ = a1,

‖L1‖ = a1 + 1; for k ≥ 2 : Sk = Sk−1L
a2k−1

k−1 , Lk = Sk−1L
a2k−1+1

k−1 . This pattern is valid for all the slopes with 1’s on all the

even places in the CF expansion. The sequence of the places of essential 1’s is (sn)n∈N+ = (2n)n∈N+ . The class under ∼con

generated by this sequence joins the least elements of all the classes under ∼len (see Proposition 2).

Example 5. Let a = [0; a1, a2, 1, a4, 1, a6, 1, a8, . . .], where a1 ∈ N+, a2 ≥ 2 and a2n ∈ N+ for all n ≥ 2 (cf. Proposition 3).

Then we have ia(1) = 1, ia(2) = 2 and ia(k) = 2k − 3 for k ≥ 3, which means that ia(k) is odd for all k 	= 2. Moreover,

b1 = a1, b2 = a2 and bk = a2k−3 +a2k−2 = 1+a2k−2 for k ≥ 3. The digitization is thus as follows: ‖S1‖ = a1, ‖L1‖ = a1 +1,

S2 = S
a2−1

1 L1, L2 = S
a2
1 L1, and for k ≥ 3 we have Sk = L

a2k−2

k−1 Sk−1 and Lk = L
a2k−2+1

k−1 Sk−1. The sequence of the places of

essential 1’s is (sn)n∈N+ = (2n + 1)n∈N+ . The class under ∼con generated by this sequence joins largest elements of all the

classes under ∼len (see Proposition 3).

To complete this section, we would like to formulate a qualitative counterpart of Propositions 2 and 3 which were

formulated in Section 3.1 for the quantitative relation ∼len. We describe the solution in Theorem 5, which is one of the

main results in this paper. First we will formulate the following lemma [31, pp. 101–102].

Lemma 1. Let (Fn)n∈N+ denote the Fibonacci sequence, i.e.,

F1 = 1, F2 = 1 and, for n ≥ 3, Fn = Fn−2 + Fn−1 . (12)

If pn/qn for n ∈ N+ denotes the nth convergent of [0; 1 ] = (
√
5 − 1)/2, then

pn = Fn, qn = Fn+1. (13)

Proof. We remark first that x = [0; 1 ] is the positive root of the equation x = 1/(1+ x), thus x2 + x−1 = 0, so it is indeed

(
√
5 − 1)/2.

For the CF [0; 1 ] we have an = 1 for n ∈ N+, so the formulae (3) and (4) together with (12) give us (13). �

Theorem 5. There exists no equivalence class under ∼con with a least element. The infimum is equal to 0 for all the classes.

There exists exactly one class under∼con which has a greatest element. This class is defined by the sequence (sj)j∈N+ = (2j)j∈N+
and the maximum is the Golden Section (

√
5 − 1)/2. The following statement describes the suprema of the classes generated by

all the possible sequences of the places of essential 1’s:

∀n ∈ N+ [(∀k ∈ [1, n − 1]Z sk = 2k) ∧ (sn > 2n ∨ |J| = n − 1)] ⇒
sup{a ∈ ]0, 1[ \ Q; a ∈ [(sj)j∈J ]∼con} = F2n−1

F2n
,

where (Fn)n∈N+ is the Fibonacci sequence as defined by (12) and |J| is the cardinality of J .

Proof. To prove the statement about the infimum we remark that in each equivalence class under ∼con there exist slopes

a = [0; a1, a2, . . .] with a1 = 1, slopes with a1 = 2 etc. When a1 tends to infinity, then a = [0; a1, a2, . . .] tends to 0, so we

have no least element in ]0, 1[ \ Q and the infimum is 0 for all classes.

To prove the statement about the supremum, we take J = ∅, J = N+ or J = [1,M]Z for someM ∈ N+ and any sequence

(sj)j∈J of integers such that s1 ≥ 2 and si − si−1 ≥ 2 for all i ∈ J \ {1}, and we consider the class generated by this sequence.

We know, from Propositions 7 and 8, that all the classes under ∼con are exactly the classes generated by sequences like this.

If J = ∅, then there is clearly no greatest element in the equivalence class [∅]∼con , because all the slopes [0; 1, a2, . . .]
with an ≥ 2 for n ≥ 2 (which are the only candidates for the position of the maximal element) belong to it and, when a2
tends to infinity, then [0; 1, a2, . . .] tends to 1 (the supremum), which does not belong to ]0, 1[ \ Q. The same reasoning

holds for J 	= ∅ in case when s1 > 2 (i.e., a2 ≥ 2).

If J 	= ∅ and s1 = 2 (i.e., a2 = 1), we consider the only (according to Proposition 1) candidate for a greatest element and

it is [0; 1, 1, 1, a4, . . .]. If s2 > 4 (i.e., a4 ≥ 2), we repeat the same reasoning again. We go on like this, using Proposition 1

about a comparison of CFs.



3666 H. Uscka-Wehlou / Theoretical Computer Science 410 (2009) 3655–3669

The flowchart below analyzes (with respect to largest elements or suprema) all the possible classes generated by all the

possible sets J and all the possible sequences (sj)j∈J as described in Proposition 7:

the candidates for max for any J: [0; 1, a2, . . .]
�

��
s1 > 2 or J = ∅

[0; 1, a(n)
2 , . . .] a

(n)
2

→∞→ 1

no max, sup 1 �

s1 = 2

the candidates for max: [0; 1, 1, 1, a4, . . .]
�

��
s2 > 4 or |J| = 1

[0; 1, 1, 1, a(n)
4 , . . .] a

(n)
4

→∞→ 2
3

no max, sup 2/3 �

s2 = 4

the candidates for max: [0; 1, 1, 1, 1, 1, a6, . . .]
�

��
s3 > 6 or |J| = 2

[0; 1, 1, 1, 1, 1, a(n)
6 , . . .] a

(n)
6

→∞→ 5
8

no max, sup 5/8 �

s3 = 6

the candidates for max: [0; 1, 1, 1, 1, 1, 1, 1, a8, . . .]
�

��
s4 > 8 or |J| = 3

[0; 1, 1, 1, 1, 1, 1, 1, a(n)
8 , . . .] a

(n)
8

→∞→ 13
21

no max, sup 13/21
�

s4 = 8

the candidates for max: [0; 1, 1, 1, 1, 1, 1, 1, 1, 1, a10, . . .]
· · ·

The rightmostway of the flowchart leads to [0; 1 ] = (
√
5−1)/2, which is an irrational number. Thismeans that the only

class which has largest element is the class as described in Example 4, generated by the sequence of the places of essential

1’s (sn)n∈N+ = (2n)n∈N+ . The statement about the suprema of all the classes can be derived from the flowchart. It follows

from Lemma 1 that the odd-numbered convergents of the Golden Section [0; 1 ] are 1 = F1
F2

, 2

3
= F3

F4
, 5

8
= F5

F6
, 13

21
= F7

F8
, . . ..

Moreover, when analyzing the flowchart one can ensure oneself that it covers all the possible classes under ∼con. �

Let us summarize the results of this section. We defined two equivalence relations on the set ]0, 1[ \ Q.
Each equivalence class under∼len has both least (Proposition 2) and greatest (Proposition 3) elements. The least elements

of all the classes under ∼len belong to the equivalence class under ∼con generated by the following sequence of the places of

essential 1’s: (sn)n∈N+ = (2n)n∈N+ (Example 4), so

min{a ∈ ]0, 1[ \ Q; a ∈ [(bn)n∈N+]∼len
} = [0; b1, 1, bn − 1]∞n=2.

The largest elements of all the classes under ∼len belong to the equivalence class under ∼con generated by the following

sequence of the places of essential 1’s: (sn)n∈N+ = (2n + 1)n∈N+ (Example 5), so

max{a ∈ ]0, 1[ \ Q; a ∈ [(bn)n∈N+]∼len
} = [0; b1, b2, 1, bn − 1]∞n=3.

In Theorem 5 we answered analogous questions about the relation ∼con. No equivalence class under ∼con has a least

element. The infimum in each class is equal to zero. The answer connectedwith greatest elements is muchmore interesting.

The partition of all the irrational numbers from the interval ]0, 1[ into equivalence classes under ∼con gives the sets with

suprema equal to the odd-numbered convergents of the Golden Section, thus with no largest element belonging to the class

(which is a set of irrational numbers). The only exception is the class generated by (sn)n∈N+ = (2n)n∈N+ , which has a greatest

element and it is equal to the Golden Section.

The only class under ∼con which has a greatest element is the class of least elements of all the classes under ∼len (cf.

Proposition 2).
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4. Main topic II: A simple description of digital lines (upper mechanical words) by two sequences of positive integers

In this section we will formulate and prove the converse to Theorem 1, where we have described the construction of

digital positive half lines y = ax, where a ∈ ]0, 1[\Q, using the index jump function. It was a necessary condition for being

digital line y = axwith slope a ∈ ]0, 1[ \Q. Having the slope, we showed the construction of the digital line. Theorem 6will

be formulated in terms of sequences of the places of essential 1’s and proven in terms of CFs. It will show that the condition

formulated in Theorem 1was also sufficient (for each such digitization we can find a slope of the real line which is digitized

according to the described construction). In Theorem 1 it was: given the slope— describe the digitization. Here (Theorem 6):

given the description of the digitization — calculate the slope.

Theorem 6 (Description by Two Sequences of Positive Integers). Each pair ((bn)n∈N+ , (sj)j∈J) of sequences of positive integers

such that

(1) bi ≥ 2 for all i ≥ 2,

(2) J = N+, J = ∅ or J = [1,M]Z for some M ∈ N+, s1 ≥ 2 (if J 	= ∅) and si − si−1 ≥ 2 for all i ∈ J \ {1},
defines exactly one digital line which has following properties: for all n ∈ N+ we have ‖Sn‖ = bn and (sj)j∈J is the sequence of the

places of essential 1’s in the CF expansion of the slope.

Proof. To construct the slope a of this line, we have to find the element of the equivalence class under ∼len defined by

(bn)n∈N+ , which fulfills the additional conditions concerning the places of essential 1’s.

If J = ∅, then a = [0; b1, b2, . . .] is the slope we are looking for.

Let J = N+. To make the following formula, we generalize the method from Theorem 4 and use Definition 6. The slope is

a = [0; a1, a2, a3, . . .], where

∀ 1 ≤ k ≤ s1 − 1 ak = bk,

as1 = 1,

as1+1 = bs1 − 1,

∀ 1 ≤ m(≤ M − 1) k ∈ [sm − m + 2, sm+1 − (m + 1)]Z ⇒ ak+m = bk,

asm+1
= 1,

asm+1+1 = bsm+1−m − 1.

We added the restriction m ≤ M − 1 in the last condition on m (in brackets in the formula above), to cover the case when

J = [1,M]Z for some M ∈ N+. If M = 1, the whole second part of the formula disappears. If J = [1,M]Z for some M ∈ N+,
the formula gets an additional row:

∀ k ∈ N+ k ≥ sM − M + 2 ⇒ ak+M = bk.

According to Theorem 1, the line y = ax for a as described above, has the short run lengths determined by the sequence

(bn)n∈N+ and (sj)j∈J is clearly the sequence of the places of the essential 1’s. Uniqueness follows from Theorem 3 (the same

digitization implies the same slope). �

Each digital line is thus fully determined by two sequences of positive integers. One of them (the sequence of length

specification (bn)n∈N+ ) fulfills the condition bn ≥ 2 for all n ≥ 2. The second one (the sequence (sj)j∈J of the places of the

essential 1’s) fulfills the conditions s1 ≥ 2 and si − si−1 ≥ 2 for all i ∈ J \ {1}. And each digital line gives such two sequences.

We have thus shown equivalence between the set of all digital lines y = ax with a ∈ ]0, 1[ \ Q (equivalently, all up-

per mechanical words with slope a and intercept 0) and the set of all the pairs of sequences of positive integers fulfilling

conditions as described in Theorem 6.

In Sections 3.1 and 3.2 we have described two equivalence relations on the set of slopes ]0, 1[ \ Q. A sequence of length

specification and a sequence of the places of essential 1’s determine together the slope of a line (Theorem 6). This gives us

the following corollary.

Corollary 1. For the two equivalence relations described in Definitions 4 and 5we have the following. For each a′, a ∈ ]0, 1[ \Q

a ∼len a′ ∧ a ∼con a′ ⇒ a = a′.

Each sequence of length specification gives a class of digital lines with bi as short run length on level i for i ∈ N+. Each
such class has the cardinality of the continuum. All the lines which belong to the same class generated by the relation ∼len

have different sequences of the places of essential 1’s, so they belong to different classes under ∼con. The two relations are

complementary.
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5. Conclusion

As mentioned in the introduction to this paper, there exist many CF-based descriptions of both digital lines and

mechanical words. Our recursive CF description of lines and words with irrational slopes seems to be the only one which

reflects the hierarchy of runs on all levels. The hierarchical structure enables us to analyze abstract properties of lines

(words).

We have defined two complementary equivalence relations on the set of slopes. One of them (quantitative ∼len) is based

on run lengths on all the digitization levels and joins all the lines with the same sequence of length specification (bn)n∈N+
in the same class. The second one (qualitative ∼con) joins all the lines with the same construction of digitization in terms of

long and short runs on all the digitization levels. We have shown that these two relations are complementary and we have

shown how to construct the slope of the (unique) line with the slope from the intersection [(bn)n∈N+]∼len
∩ [(sj)j∈J ]∼con for

any pair of sequences (bn)n∈N+ and (sj)j∈J as described in Theorem 6. We have also found a connection between ∼con and

Fibonacci numbers.

It would be interesting to compare our results to those of [2] and examine the relationship between the symmetry

partners described there and our equivalence relations. This is a possible topic for future research.

Moreover, (11) invites us to ask the following questions:

• for which a ∈ ]0, 1[ \ Q is (k, ia(k) − k + 1)k∈N+ a digital half line?

• for which a ∈ ]0, 1[ \ Q is (k, ia(k) − k + 1)k∈N+ a digital half line with irrational slope?

• for which a ∈ ]0, 1[ \ Q are the curves (k, �ak�)k∈N+ and (k, ia(k) − k + 1)k∈N+ equal to each other, i.e., are the same

digital half line DR′(y = ax, x > 0)?

The last question leads to a fixed-point theorem for Sturmian words (which are irrational, lower or upper, mechanical

words), as presented in the author’s submitted manuscript [30]. The main result there involves very strongly the partition

of the set of slopes by equivalence relation ∼len.

Acknowledgments

I am grateful to Christer Kiselman for comments on earlier versions of themanuscript. I alsowish to thank the anonymous

referee for useful comments and constructive criticism that helped me improve the quality of this paper.

References

[1] P. Arnoux, S. Ferenczi, P. Hubert, Trajectories of rotations, Acta Arithmetica LXXXVII.3 (1999).

[2] B. Bates, M. Bunder, K. Tognetti, Continued fractions and the Gauss map, Acta Mathematica Paedagogicae Nyíregyháziensis 21 (2005) 113–125.

[3] B. Bates, M. Bunder, K. Tognetti, Linkages between the Gauss map and the Stern–Brocot tree, Acta Mathematica Paedagogicae Nyíregyháziensis 22
(2006) 217–235.

[4] J. Berstel, A. de Luca, Sturmian words, Lyndon words and trees, Theoretical Computer Science 178 (1–2) (1997) 171–203.

[5] V. Berthé, S. Ferenczi, L.Q. Zamboni, Interactions between dynamics, arithmetics and combinatorics: The good, the bad, and the ugly, Contemporary
Mathematics 385 (2005) 333–364.

[6] J.-P. Borel, F. Laubie, Quelques mots sur la droite projective réelle, Journal de Théorie des Nombres de Bordeaux 5 (1) (1993) 23–51.

[7] J.-P. Borel, C. Reutenauer, Palindromic factors of billiard words, Theoretical Computer Science 340 (2005) 334–348.

[8] A.M. Bruckstein, Self-similarity properties of digitized straight lines, Contemporary Mathematics 119 (1991) 1–20.

[9] L. Davis, In memory of Azriel Rosenfeld, International Journal of Computer Vision 60 (2004) 3–4.

[10] I. Debled, Étude et reconnaissance des droites et plans discrets, Ph.D. Thesis, Strasbourg: Université Louis Pasteur, 1995, 209 pp.

[11] B. Gaujal, E. Hyon, A new factorization of mechanical words, Institut National de Recherche en Informatique et en Automatique, Rapport de recherche
nr 5175, 2004.

[12] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, 2nd ed., Addison-Wesley Publishing Group, 2006
(from 1994, with corrections made in 1998, twentieth printing).

[13] J. Karhumäki, Combinatorics on words: A new challenging topic, in: M. Abel (Ed.), Proceedings of FinEst, Estonian Mathematical Society, Tartu, 2004,
pp. 64–79.

[14] A.Ya. Khinchin, Continued Fractions, 3rd ed., Dover Publications, 1997.

[15] R. Klette, A. Rosenfeld, Digital straightness – A review, Discrete Applied Mathematics 139 (1–3) (2004) 197–230.

[16] J.C. Lagarias, Number theory and dynamical systems, in: Stefan A. Burr (Ed.), The Unreasonable Effectiveness of Number Theory, in: Proceedings of
Symposia in Applied Mathematics, vol. 46, 1992.

[17] M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, 2002.

[18] D. Perrin, Origin of combinatorics on words, 2008. http://www-igm.univ-mlv.fr/~perrin/Recherche/Seminaires/Lyon/lyon.pdf.

[19] N. Pytheas Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, in: Lecture Notes in Math., vol. 1794, Springer Verlag, 2002.

[20] J.-P. Reveillès, Géométrie discrète, calcul en nombres entiers et algorithmique. Thèse d’État, Université Louis Pasteur, Strasbourg, 1991, 251 pp.

[21] A. Rosenfeld, Digital straight line segments, IEEE Transactions on Computers c-32 (12) (1974) 1264–1269.

[22] J. Shallit, Characteristic words as fixed points of homomorphisms, Tech. Report CS-91-72, Univ. of Waterloo, Dept. of Computer Science, 1991.

[23] P.D. Stephenson, The structure of the digitised line: With applications to line drawing and ray tracing in computer graphics. Ph.D. Thesis, James Cook
University, North Queensland, Australia, 1998.

[24] K.B. Stolarsky, Beatty sequences, continued fractions, and certain shift operators, Canadian Mathematical Bulletin 19 (1976) 473–482.

[25] H. Uscka-Wehlou, Digital lines with irrational slopes, Theoretical Computer Science 377 (2007) 157–169.

[26] H. Uscka-Wehlou, Continued fractions and digital lines with irrational slopes, in: D. Coeurjolly, et al. (Eds.), DGCI 2008, in: LNCS, vol. 4992, 2008,
pp. 93–104.

[27] H. Uscka-Wehlou, Run-hierarchical structure of digital lines with irrational slopes in terms of continued fractions and the Gauss map, Pattern
Recognition 42 (2009) 2247–2254.



H. Uscka-Wehlou / Theoretical Computer Science 410 (2009) 3655–3669 3669

[28] H. Uscka-Wehlou, A run-hierarchical description of upper mechanical words with irrational slopes using continued fractions, in: Proceedings of 12th
Mons Theoretical Computer Science Days (Mons, Belgium), 27–30 August 2008, 2008. http://www.jmit.ulg.ac.be/jm2008/index-en.html. Preprint:
http://wehlou.com/hania/files/uu/mons08rev.pdf.

[29] H. Uscka-Wehlou, Continued fractions, Fibonacci numbers, and some classes of irrational numbers, 2008 (under review).
[30] H. Uscka-Wehlou, Sturmian words with balanced construction (2009) (submitted manuscript).
[31] S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Dover Publications, 2008 (2008-republication of the work

originally published in 1989).
[32] B.A. Venkov, Elementary Number Theory (Translated and edited by Helen Alderson), Wolters-Noordhoff, Groningen, 1970.





Paper V





CONTINUED FRACTIONS, FIBONACCI NUMBERS, AND
SOME CLASSES OF IRRATIONAL NUMBERS

HANNA USCKA-WEHLOU

Abstract. In this paper we define an equivalence relation on the set
of positive irrational numbers less than 1. The relation is defined by
means of continued fractions. Equivalence classes under this relation are
determined by the places of some elements equal to 1 (called essential
1’s) in the continued fraction expansion of numbers. Analysis of suprema
of all equivalence classes leads to a solution which involves Fibonacci
numbers and constitutes the main result of this paper. The problem has
its origin in the author’s research on the construction of digital lines and
upper and lower mechanical and characteristic words according to the
hierarchy of runs.

1. Introduction

Sequences generated by an irrational rotation have been intensively stud-
ied by mathematicians, astronomers, crystallographers, and computer sci-
entists; see Venkov (1970) [18, pp. 65–68] and Bruckstein (1991) [4, section
Some consequences and historical remarks]. These sequences, or related ob-
jects, can be found back in the mathematical literature under many different
names: rotation sequences, cutting sequences, Beatty sequences, character-
istic words, upper and lower mechanical words, balanced words, Sturmian
words, Christoffel words, Freeman codes (chain codes) of digital straight
lines, and so on; see Pytheas Fogg (2002) [8, p. 143]. There exist some recur-
sive descriptions by continued fractions (CF) of these sequences. The most
well known is probably the one formulated by the astronomer J. Bernoulli
in 1772, proven by A. Markov in 1882 and described by Venkov (1970) [18,
p. 67]. Also well known is the description by Shallit (1991) [11], which
can be found in Lothaire (2002) [7, p. 75, 76, 104, 105] as the method by
standard sequences.

In H.U-W (2008b) [15] the author presented a new CF based descrip-
tion of such sequences. The new description reflects the hierarchy of runs,
by analogy to digital straight lines as defined by Azriel Rosenfeld in 1974

2000 Mathematics Subject Classification. 11A55, 11B39, 03E20, 68R15.
Key words and phrases. Irrational number, equivalence relation, continued fraction,

Fibonacci numbers, digital line, (upper, lower) mechanical word, characteristic word,
Beatty sequences, Sturmian word, hierarchy, run.
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[10]. This new description appeared to be a good basis for two partitions
of upper mechanical words (digital lines) with irrational slopes into equiv-
alence classes according to the length of runs (one of the relations) and the
construction of runs (the second one) on all levels in the hierarchy. This
has been presented in H.U-W (2009) [16]. Partitions of upper mechanical
words with irrational slopes (which are Sturmian words) can give a better
understanding of their construction and, as a consequence of that, can be
useful in research in combinatorics on words. In H.U-W (2009) [16] the
author studied the equivalence classes obtained by both partitions. While
examining suprema of the equivalence classes under the relation based on
the construction of runs on all the levels in the hierarchy, the author found
a solution involving Fibonacci numbers. Now we formulate the essence of
this problem, independently from digital geometry and word theory.

The problem we discuss in this paper concerns least and greatest elements
in some sets of irrational numbers from the interval ]0, 1[. We define (by
means of CFs) an equivalence relation on ]0, 1[ \ Q; see Definition 4. This
partitions the set of positive irrational numbers less than 1 into equivalence
classes. Numbers with the same sequences of essential places (Definition 2)
in their CF expansions are gathered in the same class. As we will explain in
Section 3 (where we present the circumstances in which the presented prob-
lem appeared), the upper mechanical words (digital lines) with slopes be-
longing to the same equivalence class, have the same construction in terms of
long and short runs in the hierarchy of runs, because this is fully determined
by essential places of the slopes (Definition 1), as shown in Proposition 2.
The essential 1’s make that the most frequently appearing run on the level
they decide about is long (instead of short, as in case of CF elements dif-
ferent from 1; non-essential 1’s do not decide about the construction at all,
they only determine run length). Sturmian words with slopes belonging to
the same equivalence class thus share some construction-related properties,
which can give rise to a new tool to the research in combinatorics on words.

The main theorem of the presented paper (Theorem 1) is a description of
infima and suprema of all equivalence classes under the relation. The only
class which has a greatest element is the one which contains (

√
5 − 1)/2 =

[0; 1 ], the Golden Section, and the greatest element is the Golden Section
itself. Suprema of all the other equivalence classes are expressed by the odd-
numbered convergents of [0; 1 ]. They are thus fractions with numerators
and denominators being consecutive Fibonacci numbers.
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2. An equivalence relation on the set of positive irrational

numbers less than 1

In this paper we assume that the simple continued fraction (CF) expan-
sion of each a ∈ ]0, 1[\Q is given, expressed as a = [0; a1, a2, a3, . . . ], and we
know the positive integers ak for all k ∈ N+. These are called the elements
of the CF. By index of a CF element ak we mean the positive integer k
which describes the place of the element ak in the CF expansion of a. We
recall that

(1) [a0; a1, a2, a3, . . . ] = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

.

In our case, when a ∈ ]0, 1[ \ Q, we have a0 = �a� = 0 and the sequence of
the CF elements (a1, a2, . . . ) is infinite. We call [a0; a1, a2, . . . , an], for each
n ∈ N, the nth convergent of the CF [a0; a1, a2, . . . ]. If we define

(2) p0 = a0, p1 = a1a0 + 1, and pn = anpn−1 + pn−2 for n ≥ 2

and

(3) q0 = 1, q1 = a1, and qn = anqn−1 + qn−2 for n ≥ 2,

then

(4) [a0; a1, a2, . . . , an] =
pn

qn

for n ∈ N,

see for example Vajda (2008) [17, pp. 158–159]. For more information about
CFs see Khinchin (1997) [5].

Some elements equal to 1 in the CF expansion of a ∈ ]0, 1[\Q will receive
special attention. The reason for this has its roots in the theory of digital
lines or, equivalently, upper mechanical words with slope a and intercept 0.
This will be explained in Section 3.

Definition 1. Let a ∈ ]0, 1[ be an irrational number and let [0; a1, a2, a3, . . . ]
be its CF expansion. Let k ∈ N+ be such that ak = 1. The integer k is
called an essential place for a if the following assertions hold:

• k ≥ 2
• ∃ j ∈ N, [0; a1, a2, . . . ] = [0; a1, a2, . . . , ak−2j−1, 1, 1, . . . , 1, 1︸ ︷︷ ︸

2j

, ak, . . . ]

and, if k − 2j − 1 ≥ 2, then ak−2j−1 ≥ 2.

In other words, a natural number k ≥ 2 is an essential place of a =
[0; a1, a2, . . . ] iff ak = 1 and ak is directly preceded by an even number
(i.e., by 0, 2, 4, . . . ) of consecutive 1’s (i.e., elements am = 1) with an index
m greater than 1. Such elements ak (where k is an essential place) we called
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essential 1’s in H.U-W (2009) [16, Definition 6]. The CF elements ak = 1
which are not in essential places in the CF expansion of a (i.e., if k = 1, or
if k ≥ 3 and ak is directly preceded by an odd number of consecutive 1’s
with an index greater than 1), are called non-essential 1’s.

Definition 2. Let a = [0; a1, a2, . . . ] be irrational. We denote by A the set
of all essential places for a, i.e., A = {k ∈ N+; k is an essential place for a},
and by |A| the cardinality of A. Let the set J be as follows:

• A = ∅ ⇒ J = ∅,
• |A| = ℵ0 ⇒ J = N+,
• [ ∃ M ∈ N+, |A| = M ] ⇒ J = [1, M ]Z.

We define (sj)j∈J , the sequence of essential places of the CF expansion of a
as follows:

• J = ∅ ⇒ (sj)j∈∅ = ∅,
• J �= ∅ ⇒ (sj)j∈J is such that s1 = min{k ∈ N+; k ∈ A} and, if

n ∈ J \ {1}, then sn = min{k > sn−1; k ∈ A}.
In words, J = ∅ if there are no 1’s in the CF expansion of a (except maybe
for a1), J = N+ is there are infinitely many 1’s in the CF expansion of a,
and J = [1, M ]Z for some M ∈ N+ if there are exactly M essential places
(essential 1’s) in the CF expansion of a. The sequence of essential places
for a is indexed by J and we put the smallest essential place first, the next
one on the second place, and so on. The sequence of essential places defined
above was called the sequence of the places of essential 1’s in H.U-W (2009)
[16, Definition 7].

The following lemma shows how to find essential places in an easy way.

Lemma 1. Let a = [0; a1, a2, . . . ] be irrational and let the set J for this
slope be as described in Definition 2. Then the sequence (sj)j∈J of essential
places of the CF expansion of a is (sj)j∈∅ = ∅ if J = ∅ and, if J �= ∅, then
(sj)j∈J is as follows: s1 = min{k ≥ 2; ak = 1} and

(5) n ∈ J \ {1} ⇒ sn = min{k ≥ sn−1 + 2; ak = 1}.
Proof. Let us consider any irrational a = [0; a1, a2, . . . ] and the correspond-
ing (sj)j∈J as in Definition 2. If J = ∅, then (sj)j∈∅ = ∅. If J �= ∅, then we
can prove the statement by induction (if |J | = M for some M ∈ N+, the
proof has only a finite number of steps). It follows from Definition 1 that
s1 ≥ 2. Let us take any m ∈ J \{1} such that sm−1 is an essential place. We
will show that the next essential place is sm = min{k ≥ sm−1 + 2; ak = 1}.
First we show that sm − sm−1 ≥ 2. Suppose not, i.e., sm = sm−1 + 1. Then
both asm−1 = 1 and asm−1+1 = 1, which are consecutive CF elements of
a, are essential 1’s. This is not possible, however, because, as consecutive
CF elements equal to 1, they cannot both be directly preceded by an even
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number of CF elements equal to 1 and with an index greater than 1. We
get a contradiction, so it must be sm − sm−1 ≥ 2.

If the difference between sm (as defined by (5)) and sm−1 is greater than 2,
then asm = 1 is the next essential 1 following after asm−1 , because, according
to (5), there are no other 1’s between asm−1 and asm (maybe asm−1+1 = 1,
but then it is a non-essential 1, as it is directly preceded by an odd number
of aj = 1 with j > 1, and sm−1+1 < sm−1), so asm = 1 is directly preceded
by zero (i.e., an even number) 1’s.

If sm − sm−1 = 2 (where sm is defined by (5)), then asm = 1 is the next
essential 1 following after asm−1 , because it is directly preceded by an even
number of CF elements equal to 1 and with index greater than 1. This
number is equal to zero if asm−1+1 ≥ 2 and to the even number of such 1’s
corresponding to sm−1, increased by 2, in case asm−1+1 = 1. �
Example 1. Let a = [0; a1, a2, a3, a4, . . . ], with ∀ k < 16, ak = 1 if and
only if k ∈ {1, 3, 4, 6, 7, 10, 13, 14, 15}. We find the sequences of essential
places in the CF expansion of such a in the following way:

a = [0; 1, a2, 1, 1, a5, 1, 1, a8, a9, 1, a11, a12, 1, 1, 1, . . . ]
↓ ↓ ↓ ↓ ↓ . . .

(sj)j∈J = ( 3, 6, 10, 13 15 . . . ).

All essential 1’s with index less than 16 are underlined. We have (sj)j∈J =
(3, 6, 10, 13, 15, . . . ). The first four non-essential 1’s are a1, a4, a7, a14.

The following proposition describes all the possible sequences of essential
places for CF-expansions of positive irrational a less than 1. First, we will
introduce the following definition.

Definition 3. A sequence (tj)j∈J of positive integer numbers will be called
an essential sequence iff:

• the set J is as follows: J = ∅, J = N+ or J = [1, M ]Z for some
M ∈ N+,

• the sequence (tj)j∈J (if not empty) is a sequence of positive integers
such that t1 ≥ 2 and, for k ∈ J \ {1}, tk − tk−1 ≥ 2.

Proposition 1. A sequence of positive integer numbers is an essential se-
quence iff it is the sequence of essential places for some irrational a =
[0; a1, a2, . . . ].

Proof. Let (tj)j∈J be an essential sequence (Definition 3). We define a =
[0; a1, a2, . . . ] in the following way: if J = ∅, then we take any a1 ∈ N+ and,
for each n ≥ 2, we choose any an ≥ 2. If J is not empty, we define ati = 1
for all i ∈ J and ak for k ∈ N+ \ {tj}j∈J can be any interger greater than
or equal to 2. It follows trivially from Definitions 1 and 2 that (tj)j∈J is
the sequence of essential places for such a. The second implication in the
statement follows from Lemma 1. �
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All sequences of essential places have elements greater than or equal to 2,
are increasing and the difference between each two consecutive elements is
greater than or equal to 2. Each sequence, finite or infinite, with those
properties (i.e., an essential sequence), is the sequence of essential places
for some a ∈ ]0, 1[ \ Q.

We can identify with each other all irrational numbers from the interval
]0, 1[ which have the same sequences of essential places.

Definition 4. We define the following relation ∼ess⊂ (]0, 1[\Q)2. If a and
a′ are positive irrational numbers less than 1, then

a ∼ess a′ ⇔
(
s
(a)
j

)
j∈J

=
(
s
(a′)
k

)
k∈J ′

,

where
(
s
(a)
j

)
j∈J

and
(
s
(a′)
k

)
k∈J ′

are the corresponding sequences of essential

places in the CF expansion of a and a′ respectively.

The relation ∼ess partitions the set ]0, 1[\Q into equivalence classes defined
by essential sequences (Definition 3, Proposition 1). Let us consider the
following examples.

Example 2. Let (tj)j∈∅ = ∅. The class under ∼ess generated by this
sequence is the set of all a ∈ ]0, 1[ \ Q such that a = [0; a1, a2, . . . ], where
a1 ∈ N+ and an ≥ 2 for all n ≥ 2.

Example 3. Let (tj)j∈N+ = (2j)j∈N+ . The class under ∼ess generated
by this sequence is the set of all positive irrational numbers with the CF
expansion a = [0; a1, 1, a3, 1, a5, 1, . . . ], where a2n+1 ∈ N+ for all n ∈ N.
The Golden Section (

√
5 − 1)/2 belongs to this class.

The problem we want to solve in this paper is the question about supre-
mum and infimum of each class under ∼ess. The following lemma, which
shows how to compare two CFs with each other, will help us to find the
solution.

Lemma 2. Let a0, b0 ∈ Z and ai, bi ∈ N+ for all i ∈ N+. Then

[a0; a1, a2, . . . ] < [b0; b1, b2, . . . ] ⇔

(a0,−a1, a2,−a3, a4,−a5, . . . )
lexic.
< (b0,−b1, b2,−b3, b4,−b5, . . . ),

where the first inequality is according to the order < on the real numbers, and
the second inequality is according to the lexicographical order on sequences.

Theorem 1 (Main Theorem). There exists no equivalence class under ∼ess
with a least element according to the order ≤ on the real numbers. The
infimum is equal to 0 for all the classes.
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There exists exactly one class under ∼ess which has a greatest element
according to the order ≤ on the real numbers. This class is defined by
the sequence (tj)j∈N+ = (2j)j∈N+ and the maximum is the Golden Section

(
√

5− 1)/2. Moreover, the following statement describes suprema of all the
classes under ∼ess different from [(2j)j∈N+ ]∼ess. For all n ∈ N+

[(∀ k ∈ [1, n − 1]Z, tk = 2k) ∧ (tn > 2n ∨ |J | = n − 1)]

⇒ sup{a ∈ ]0, 1[ \ Q; a ∈ [(tj)j∈J ]∼ess} =
F2n−1

F2n

,

where (Fn)n∈N+ is the Fibonacci sequence, i.e.,

(6) F1 = 1, F2 = 1 and, for k ≥ 3, Fk = Fk−1 + Fk−2,

|J | denotes the cardinality of J , and (tj)j∈J is any essential sequence differ-
ent from (2j)j∈N+.

Proof. To prove the statement about infimum we observe that in each equiv-
alence class under ∼ess there exist numbers a = [0; a1, a2, . . . ] with a1 = 1,
numbers with a1 = 2, etc. When a1 tends to infinity, then a = [0; a1, a2, . . . ]
tends to zero, so zero is infimum and we have no least element in the class
(which is a subset of ]0, 1[ \ Q).

To prove the statement about supremum, we take J = ∅, J = N+ or
J = [1, M ]Z for some M ∈ N+ and we consider all the classes generated
by all possible essential sequences, i.e., by sequences (tj)j∈J of integers such
that t1 ≥ 2 and ti − ti−1 ≥ 2 for all i ∈ J \ {1}.

The flowchart on p. 8 analyzes all such possible classes with respect to
greatest elements and suprema. We use Lemma 2 in each step of the flow-
chart. To make a CF as large as possible, the even-numbered CF elements
must be as large as possible (it is represented by the left-hand side of the
flowchart) and the odd-numbered CF elements must be as small as possible,
thus equal to 1 (see the right-hand side of the flowchart).

If J = ∅, then there is clearly no greatest element in the equivalence class
[∅]∼ess , because all the numbers [0; 1, a2, . . . ] with an ≥ 2 for n ≥ 2 (which
are the only candidates for the position of maximum) belong to it and, when
a2 tends to infinity, then [0; 1, a2, . . . ] tends to 1, which does not belong to
]0, 1[ \Q, so there is no greatest element. The supremum is equal to 1. The
same reasoning holds for J �= ∅ in case when t1 > 2 (thus a2 ≥ 2).

If J �= ∅ and t1 = 2 (thus a2 = 1), we consider the only (according to
Lemma 2) candidate for a greatest element and it is [0; 1, 1, 1, a4, . . . ]. If
t2 > 4 (thus a4 ≥ 2), we repeat the same reasoning again: when a4 tends to
infinity, then [0; 1, 1, 1, a4, . . . ] tends to 2

3
, so it is the supremum. There is

no greatest element, because the supremum is rational. We go on like this,
using Lemma 2 about comparison of CFs.
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the candidates for max for any J : [0; 1, a2, . . . ]
�

�
���

t1 > 2 or J = ∅ (i.e., a2 ≥ 2)

[0; 1, a
(n)
2 , . . . ]

a
(n)
2 →∞→ 1

no max
�

t1 = 2
(i.e., a2 = 1)

the candidates for max: [0; 1, 1, 1, a4, . . . ]
�

�
���

t2 > 4 or |J | = 1 (i.e., a4 ≥ 2)

[0; 1, 1, 1, a
(n)
4 , . . . ]

a
(n)
4 →∞→ 2

3

no max
�

t2 = 4
(i.e., a4 = 1)

the candidates for max: [0; 1, 1, 1, 1, 1, a6, . . . ]
�

�
���

t3 > 6 or |J | = 2 (i.e., a6 ≥ 2)

[0; 1, 1, 1, 1, 1, a
(n)
6 , . . . ]

a
(n)
6 →∞→ 5

8

no max
�

t3 = 6
(i.e., a6 = 1)

the candidates for max: [0; 1, 1, 1, 1, 1, 1, 1, a8, . . . ]
�

�
���

t4 > 8 or |J | = 3 (i.e., a8 ≥ 2)

[0; 1, 1, 1, 1, 1, 1, 1, a
(n)
8 , . . . ]

a
(n)
8 →∞→ 13

21

no max
�

t4 = 8
(i.e., a8 = 1)

the candidates for max: [0; 1, 1, 1, 1, 1, 1, 1, 1, 1, a10, . . . ]
�

�
���

t5 > 10 or |J | = 4 (i.e., a10 ≥ 2)

[0; 1, 1, 1, 1, 1, 1, 1, 1, 1, a
(n)
10 , . . . ]

a
(n)
10 →∞→ 34

55

no max
�

t5 = 10
(i.e., a10 = 1)

the candidates for max: [0; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, a12, . . . ]

and so on...
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The rightmost way of the flowchart from p. 8 leads to [0; 1 ], which is
irrational, equal to (

√
5 − 1)/2. This means that the only class which has

a greatest element is the class as described in Example 3, generated by the
essential sequence (tj)j∈N+ = (2j)j∈N+ .

The statement about suprema of all the classes can be derived from the
flowchart. It follows from (2), (3), (4) and (6), that the odd-numbered

convergents of the Golden Section [0; 1 ] are p2n−1

q2n−1
= F2n−1

F2n
for n ∈ N+; see

for example Vajda (2008) [17, pp. 101–105] or Benjamin and Quinn (2003)
[3, p. 52]. The odd-numbered convergents are thus F1

F2
= 1, F3

F4
= 2

3
, F5

F6
=

5
8
, F7

F8
= 13

21
, F9

F10
= 34

55
, . . . . Moreover, when analyzing the flowchart one can

ensure oneself that it covers all the possible classes under ∼ess. �

In Theorem 1 we answered questions about least and greatest elements
in classes generated by the relation ∼ess. No equivalence class under ∼ess
has a least element. The infimum in each class is equal to zero. The answer
related to largest elements is much more interesting. The partition of all
the irrational numbers from the interval ]0, 1[ into equivalence classes under
∼ess gives the sets with suprema equal to the odd-numbered convergents
of the Golden Section, thus with no largest element belonging to the class
(which is a set of irrational numbers). The only exception is the class
generated by (tj)j∈N+ = (2j)j∈N+ , which has a greatest element and it is
equal to the Golden Section.

3. The origin of the problem. Digital lines and Sturmian

words

In this section we will give some information about the circumstances
in which the presented problem arose. In H.U-W (2009) [16] we analyzed
two equivalence relations defined on the set of all slopes a ∈ ]0, 1[ \ Q of
digital straight lines y = ax (or, equivalently, of upper mechanical words
u(a) : N → {0, 1}, un(a) = �a(n + 1)� − �an� for each n ∈ N). One of
those relations is the one discussed in the presented paper. This relation
identifies with each other all slopes which have the same sequences of es-
sential places (Definitions 1 and 2) in their CF expansions. We know from
H.U-W (2008a) [14] that essential 1’s determine the construction of digital
lines. How exactly, will be shown in Proposition 2.

General information about digital straightness can be found in the re-
view by R. Klette and A. Rosenfeld from 2004 [6]. Very good sources of
information are also Reveillès (1991) [9] and Stephenson (1998) [12]. The
digitization DR′ of y = ax for some a ∈ ]0, 1[\Q as defined in H.U-W (2007)
[13] is the following:

(7) DR′(y = ax) = {(k, �ak�); k ∈ Z}.
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�

�

�

�

�

�

�

� � � � �

� � � � � � � � �

� � � � � � � � � � 	 � � � 	 � � �

� 
 � � � 
 � � �

� � � � � � � � �� � � � � � � � ��  � � �  � � �

� � � � � �

Figure 1. Digitization of y = ax for some a ∈ ]0, 1[ \ Q;
u(a) = 1010100 · · · .

We illustrate it with an example in Figure 1.
The 0’s and 1’s on the squares in the picture show the relationship be-

tween digital lines and upper and lower mechanical and characteristic words.
Let us recall the definitions of those words; see Lothaire (2002) [7, p. 53].

Definition 5. For each a ∈ ]0, 1[ \ Q we define two binary words in the
following way: l(a) : N → {0, 1}, u(a) : N → {0, 1} are such that for each
n ∈ N

ln(a) = �a(n + 1)� − �an�, un(a) = �a(n + 1)� − �an�.
The word l(a) is the lower mechanical word and u(a) is the upper mechanical
word with slope a and intercept 0.

We have l0(a) = �a� = 0 and u0(a) = �a� = 1 and, because �x�−�x� = 1
for irrational x, we have

(8) l(a) = 0c(a), u(a) = 1c(a)

(meaning 0, resp. 1 concatenated to c(a)). The word c(a) is called the
characteristic word of a. For each a ∈ ]0, 1[ \ Q, the characteristic word
associated with a is thus the following infinite word c(a) : N+ → {0, 1}:
(9) cn(a) = �a(n + 1)� − �an� = �a(n + 1)� − �an�, n ∈ N+.

Formulae (7), (8) and (9), together with the 0’s and 1’s in Figure 1,
illustrate and explain the relationship between digital lines and lower and
upper mechanical and characteristic words. The developed theory is thus
also valid for upper and lower mechanical words and characteristic words;
see for example Lothaire (2002) [7, p. 53, 2.1.2 Mechanical words, rotations],
H.U-W (2008b) [15]. According to Theorem 2.1.13 in Lothaire (2002) [7,
p. 57], irrational (lower or upper) mechanical words are Sturmian words.

Our description of digital lines in the author’s papers [13, 14, 16] reflected
the hierarchy of runs on all digitization levels. The concept of runs was
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already introduced and explored by Azriel Rosenfeld (1974) [10, p. 1265].
We call runk(j) for k, j ∈ N+ a run of digitization level k. Each run1(j) can
be identified with a subset of Z2 : {(i0 + 1, j), (i0 + 2, j), . . . , (i0 + m, j)},
where m is the length ‖run1(j)‖ of the run. For upper mechanical words,
the corresponding run is 10m−1, where m−1 is the number of all the letters
0 between the letter 1 in the beginning of the run and the next occurring
letter 1 in the word. For each a ∈ ]0, 1[ \Q we have only two possible run1

lengths:
⌊

1
a

⌋
and

⌊
1
a

⌋
+ 1. All runs with one of those lengths always occur

alone, i.e., do not have any neighbors of the same length in the sequence
(run1(j))j∈N+ , while the runs of the other length can appear in sequences.
The same holds for the sequences (runk(j))j∈N+ on each level k ≥ 2. We
use the notation Sm

k Lk, LkS
m
k , Lm

k Sk and SkL
m
k , when describing the form

of digitization runsk+1. For example, Sm
k Lk means that the runk+1 consists

of m short runsk (Sk) and one long runk (Lk) in this order. In Figure 2
we can see an example of the run hierarchical structure for the line y = ax
with a = [0; 1, 2, 1, 1, 3, 1, 1, a8, a9, . . . ], where a8, a9, · · · ∈ N+.

� � � � � � � � � � � 
 � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � �  � � � � � � � � � � � � � � � � � � � � 	 � � � �

� �

� �

� 


� 


� �

� �

� 	

� 	


 � �
� � �
�

� � 	

 � �
�

� � �
� � �

� � �
� � �

�  � � 	 � 	 � � � � � �

 � � � � � �

� � � � � 


 � 
 � � � 
 � 
 � 
 � � 



 � 
 � � � 
 � 
 � �

� � � �

 � � � 
 � � � � � � � � � �


 � � � � � � � � � � 


� � �

 � � � 
 � � � � � � � � � �


 � � � � � � � � � � �

� 	 � ! � � � � � � � � " � # � � # $ � � � � % � � � & � � � 	

� 	 � ! � � � � � � � � � � ' � # $ � � � � % � � � & � � � 	

% � # � � 	 � � � � � � 
 � � � � � 	 � �  � �

Figure 2. Hierarchy of long and short runs on the first four
digitization levels; to translate this hierarchy for the case of
upper mechanical words, put S1 = 1 and L1 = 10.
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The basis for the author’s CF description, from H.U-W (2008a) [14],
of digital lines y = ax for a ∈ ]0, 1[ \ Q according to the definition (7)
constitutes the following index jump function.

Definition 6. Let a = [0; a1, a2, a3, . . . ] be a positive irrational number less
than 1. We define the index jump function ia : N+ → N+ for a as follows:
ia(1) = 1, ia(2) = 2, and, for k ≥ 2, ia(k + 1) = ia(k) + 1 + δ1(aia(k)), where

δ1(x) =

{
1, x = 1
0, x �= 1

and an for n ∈ N+ are the CF elements of a.

In H.U-W (2009) [16, Definition 6], essential 1’s for [0; a1, a2, . . . ] were
defined as such ak = 1 that k = ia(m) for some m ≥ 2 (compare Definition 6
with Lemma 1). The index jump function registers the essential places from
the CF expansion of a. We have (ia(k))k∈N+ = N+ \ (sj + 1)j∈J for all
a ∈ ]0, 1[ \ Q; for more details see H.U-W (2009) [16].

The following proposition, which is an immediate consequence of The-
orem 4 from H.U-W (2008a) [14], explains the role of essential 1’s
in the construction of digital lines, and, equivalently, in the run
hierarchical structure of upper mechanical words.

Proposition 2. If a is irrational and a = [0; a1, a2, . . . ], then for the dig-
itization of y = ax (the run hierarchical structure of u(a)) we have the
following. The CF elements a2, a3, . . . determine the run hierarchical con-
struction of y = ax (of u(a)) in the following way. For each k ∈ N+

• aia(k+1) ≥ 2 ⇒ Sk is the most frequent run on level k,
• aia(k+1) = 1 ⇒ Lk is the most frequent run on level k,

where ia is the corresponding index jump function as defined in Definition 6.

The only 1’s in the CF expansion of a which influence the run-hierarchical
construction of digital line y = ax (upper mechanical word u(a)) are thus
those which are indexed by the values of the index jump function, equiva-
lently, those which are directly preceded by an even number of consecutive
1’s with an index greater than 1. Briefly, only essential 1’s cause the change
of the most frequent run on the level they correspond to from short (Sk)
to long (Lk). Which level they correspond to, is determined by the index
jump function generated by a, as shown in Proposition 2. We will illustrate
this proposition with the following example.

Example 4. We consider the lines as in Figure 2, thus lines y = ax with
slopes a = [0; 1, 2, 1, 1, 3, 1, 1, a8, a9, . . . ], where a8, a9, · · · ∈ N+. Each CF
element of a is responsible for some digitization level. According to Propo-
sition 2, if aia(k+1) ≥ 2, then the most frequent run on level k is the short
one, Sk. Otherwise, i.e., if aia(k+1) = 1, the dominating runk is Lk. For the
lines as in Figure 2, we have thus the following, which can be compared
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with the picture:

level k aia(k+1) the most frequent runk

1 aia(2) = a2 = 2 ≥ 2 S1

2 aia(3) = a3 = 1 L2

3 aia(4) = a5 = 3 ≥ 2 S3

4 aia(5) = a6 = 1 L4

Indeed, we have L2 = S2
1L1, L3 = L2

2S2, L4 = L3S
3
3 , L5 = S4L

2
4.

4. Conclusion

We have presented a partition of the set ]0, 1[\Q into equivalence classes
under a CF-defined equivalence relation. The relation groups together all
positive irrational numbers less than 1 which have the same sequences of
essential places in their CF expansions. All digital lines (upper mechanical
words) with slopes belonging to the same equivalence class have the same
construction in terms of long and short runs on all the levels in the hierarchy
of runs. We have proven that the only class which has a greatest element
is the class represented by the Golden Section. All the other classes have
suprema defined by Fibonacci numbers.

The problem comes originally from digital geometry and word theory,
but it can be formulated independently from these domains, as a problem
concerning irrational numbers.

Because of the strong relationship between our description of digitization
and the Gauss map (see the concept of digitization parameters from [13]),
it would be interesting to compare our results to those of Bates et al. (2005)
[2] and examine the relationship between the symmetry partners described
there and our equivalence relation.

Another possible continuation of the research on our equivalence relation
could be analysis of properties of the CFs with sequences of essential places
determined by well-known sequences such like the Fibonacci numbers or the
Pell numbers. One could try, for example, formulate the rules for transcen-
dentality of CFs depending on the sequences of essential places. Examples
of analysis of transcendentality of CFs can be found in Adamczewski et al.
(2006) [1].
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on earlier versions of the manuscript. I also wish to thank the anonymous
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ments in this paper.



14 HANNA USCKA-WEHLOU

References

1. B. Adamczewski, Y. Bugeaud, L. Davison. Continued fractions and transcendental
numbers. Annales de l’institut Fourier, 56 no. 7, pp. 2093–2113, 2006.

2. B. Bates, M. Bunder, K. Tognetti. Continued Fractions and the Gauss Map. Acta
Mathematica Academiae Paedagogicae Nýıregyháziensis 21, pp. 113–125, 2005.
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Abstract. In this paper we define Sturmian words with balanced construction. We formulate a fixed-point
theorem for Sturmian words and analyze the set of all fixed points. The inspiration for this work came from
the Kolakoski word and the general idea of self-reading sequences by Păun and Salomaa. The basis for
this article is the author’s earlier research on the influence of the continued fraction elements in the expan-
sion of a ∈ ]0, 1[\Q on the construction of runs for the upper mechanical word with slope a and intercept 0.

Keywords: upper mechanical word; irrational slope; Sturmian word; continued fraction; hierarchy of runs;
fixed point; self-reading sequence; Kolakoski word; Freeman chain code.

1 Introduction

Word theory has grown very intensively during the last century. The theory has found numerous
applications in computer science, which has stimulated its fast development. Both mathematicians
and theoretical computer scientists have been working on problems connected with word theory and
related domains. A very good illustration of the results of this work and of the variety of domains and
subjects word theory is connected to, is presented in Pytheas Fogg (2002) [16], Lothaire (2002) [13],
Allouche and Shallit (2003) [1], Perrin and Pin (2004) [15], Karhumäki (2004) [10], Berthé, Ferenczi
and Zamboni (2005) [3], and Berstel et al. (2008) [2].

This paper about binary words is inspired mainly by ideas of three persons: William G. Kolakoski,
Herbert Freeman and Azriel Rosenfeld.

Self-reading sequences have been examined by a lot of researchers. Some general definitions of those
can be found in [9, 14]. William G. Kolakoski has described probably the most famous self-reading
sequence, very well known to the community of theoretical computer scientists; see [12] and [16, p. 93].
The Kolakoski word is defined as one of the two fixed points of the run-length encoding Δ; see [5,
6]. These words are identical with their own run-length encoding sequences. The one beginning with
2 is: K = 2211212212211211221211212211211212212211212212 · · · . Brlek et al. have studied some
generalizations of the Kolakoski word to an arbitrary alphabet, which got the name of smooth words;
see [6] and references there.

A simple example of a self-reading sequence is the Morse sequence u which begins with a and is
defined as the fixed point of the Morse substitution σ defined over the alphabet {a, b} by σ(a) = ab,
σ(b) = ba, thus u = abbabaabbaababbabaababbaabbabaabbaababbaabbabaababbabaabbaabab . . .; see also
[16, p. 7]. Another simple self-reading sequence is the Fibonacci word defined as the fixed point w
beginning with 1 of the substitution ϕ(1) = 10, ϕ(0) = 1; see also [16, p. 7]. We show on Figure 1 how
to construct w. The arrows pointing downwards show how we use the definition of the substitution ϕ,
the arrows pointing upwards show how to use the fixed-point condition w = ϕ(w). Because ϕ(w) is
being formed faster than w, we get in each step enough information to be able to construct w.

Generally, the characteristic words of irrational numbers with purely periodic continued fraction
(CF) expansion (i.e., some quadratic surds) are also fixed points of corresponding substitutions, as has
been shown in the paper by Shallit (1991) [18]. These fixed points, and, in particular, the Fibonacci
word, are Sturmian. They are also examples of self-reading sequences.



2

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Fig. 1. The Fibonacci sequence as the fixed point w beginning with 1 of the substitution ϕ(1) = 10, ϕ(0) = 1.

The cutting sequence of grid lines by the half-line y = ax for a ∈ ]0, 1[ \Q and x > 0 (i.e., the line
passes through no lattice points) is one of binary representations of y = ax, where 0 denotes a vertical
grid crossing and 1 a horizontal one. Such a sequence for straight lines with irrational slopes is Sturmian
[16, p. 143]. There is a close relationship between the cutting sequence of y = ax for a ∈ ]0, 1[ \Q and
the line’s chain code (which is the same, or the same up to the transformation “replace 10 by 1”, as the
characteristic word with slope a, depending on whether the line is naive or standard). Herbert Freeman
(1970) [8, p. 260] observed that in the chain code of a digital straight line “successive occurrences of the
element occurring singly are as uniformly spaced as possible”. This property has been formalized and
has got the name of balance property; see [25]. The self-similarity properties formulated by Bruckstein
(1991) [7] form a quantitative expression of this uniformity principle.

Azriel Rosenfeld described in his paper from 1974 [17] the run-hierarchical structure of digital lines.
On each level k (for k ≥ 2) we have runsk which are composed of a single occurring runk−1 (long Lk−1

or short Sk−1) and a maximal sequence of runsk−1 (short Sk−1 or long Lk−1, respectively) following
after this single one or preceding it. On some levels the long runs are the most frequent (coming in
sequences), while on other levels the short runs are the mainly occurring ones.

In Uscka-Wehlou (2008) [22] we presented a CF-based description of upper mechanical words,
which reflects the run-hierarchical structure of words. The present idea is to create a run-construction
encoding operator, by analogy to the run-length encoding operator. The latter is very well known
and was used for coding the Thue–Morse word by Brlek in 1988 [5] and the former is a new concept,
defined for the first time in the present paper (Definition 6). We will look for the fixed points of the run-
construction encoding operator. For them even the constructional distribution is uniform, in the way
as described by Freeman. In the main theorem of this paper (Theorem 4) we show that every infinite
sequence of positive natural numbers such that all the elements indexed by numbers greater than 1
are greater than 1 generates exactly one fixed point of the run-construction encoding operator. All of
them are self-generating sequences, identical with their own run-construction encoding sequences, by
analogy with the Kolakoski word. In the second half of this paper we present a number of examples.
We also examine the set of all fixed points (Theorem 5) and formulate a number of questions and
combinatorial problems for further research (on p. 8 after Proposition 3, and in Section 6).

2 A continued-fraction-based description of upper mechanical words

In [22] we presented a recursive description by CFs of upper mechanical words. Let us recall the
definiton of those; cf. Lothaire (2002) [13, p. 53].

Definition 1. Given two real numbers a and r with 0 ≤ a ≤ 1, we define two infinite words
s(a, r), s′(a, r):N → {0, 1} by sn(a, r) = �a(n+1)+r�−�an+r� and s′n(a, r) = �a(n+1)+r	−�an+r	.
The word s(a, r) is the lower mechanical word and s′(a, r) is the upper mechanical word with slope a
and intercept r. A lower or upper mechanical word is irrational or rational according as its slope is
irrational or rational.



3

In the present paper we deal with the special case when a ∈ ]0, 1[ is irrational and r = 0. In this
case we will denote the lower and upper mechanical words by s(a) and s′(a) respectively. We have
s0(a) = �a� = 0 and s′0(a) = �a	 = 1 and, because �x	 − �x� = 1 for irrational x and �x	 − �x� = 0
only for integers, we have

s(a) = 0c(a), s′(a) = 1c(a) (1)

(meaning 0, resp. 1 concatenated to c(a)). The word c(a) is called the characteristic word of a. For
each a ∈ ]0, 1[ \ Q, the characteristic word associated with a is thus the following infinite word
c(a):N+ → {0, 1}:

cn(a) = �a(n + 1)� − �an� = �a(n + 1)	 − �an	, n ∈ N+. (2)

It is well known that the equality of characteristic words gives the equality of corresponding slopes,
i.e., for any a, a′ ∈ ]0, 1[ \Q, if c(a) = c(a′), then a = a′; cf. Lothaire (2002) [13, p. 62, Lemma 2.1.21].

We assume that, for each a ∈ ]0, 1[ \ Q, its simple CF expansion is given, expressed as a =
[0; a1, a2, a3, . . .], and we know the positive integers ai for all i ∈ N+. These are called the elements
(or partial quotients) of the CF. Let us recall that

[a0; a1, a2, a3, . . .] = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

.

In our case, when a ∈ ]0, 1[\Q, we have a0 = �a� = 0 and the sequence of the CF elements (a1, a2, . . .)
is infinite. For more information about CFs see Khinchin (1997) [11].

Our CF description of upper mechanical words from [22] was based on our earlier one by digitization
parameters from [19] and the following index jump function, introduced by the author in [20].

Definition 2. For each a ∈ ]0, 1[ \Q, the index jump function ia:N+ → N+ is defined by ia(1) = 1,

ia(2) = 2, and ia(k + 1) = ia(k) + 1 + δ1(aia(k)) for k ≥ 2, where δ1(x) =

{
1, x = 1
0, x 
= 1 ,

and aj for

j ∈ N+ are the CF elements of a.

The index jump function is a renumbering which avoids elements following directly after some 1’s in
the CF expansion (in particular, it avoids every second element in the sequences of consecutive 1’s
with index greater than 1); see also [21].

In [22], upper mechanical words were described according to the hierarchy of runs on all levels,
as introduced by Azriel Rosenfeld (1974) [17, p. 1265]. A run of the first level is a maximal sequence
10m, meaning the letter 1 followed by m ≥ 0 letters 0. For a given slope, there are only two possible
run lengths, runs with the smaller length we call short runs (S1) and runs with the largest length we
call long runs (L1). The same holds for the other levels: a run of level n is a maximal sequence of runs
of level n − 1, i.e., Sk

n−1Ln−1, Sn−1L
k
n−1, Ln−1S

k
n−1 or Lk

n−1Sn−1 and the cardinality-wise run length
of runn, denoted by ‖runn‖, is the number (here k + 1) of runsn−1 forming it. We denote by |w| the
binary-word length of a 0-1 word w, i.e., the total number of its letters. The following theorem shows
how exactly the run-hierarchical structure of s′(a) for each a ∈ ]0, 1[ \Q depends on the CF elements
of a. Because of (1) and (2), this gives also a description of lower mechanical and characteristic words.

Theorem 1 ([22]; a CF description of upper mechanical words). Let a ∈ ]0, 1[ \ Q and
a = [0; a1, a2, . . .]. For s′(a) as in Definition 1 we have s′(a) = limk→∞ Pk, where P1 = S1 =
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10a1−1, L1 = 10a1, and, for k ≥ 2,

Pk =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Lk = S
aia(k)

k−1 Lk−1 if aia(k) 
= 1 and ia(k) is even

Sk = Sk−1L
aia(k)+1

k−1 if aia(k) = 1 and ia(k) is even

Sk = Lk−1S
−1+aia(k)

k−1 if aia(k) 
= 1 and ia(k) is odd

Lk = L
1+aia(k)+1

k−1 Sk−1 if aia(k) = 1 and ia(k) is odd,

(3)

where the function ia is defined in Definition 2. The meaning of the symbols is the following: for
k ≥ 1, Pk is the Prefix number k, Sk is the Short runk and Lk is the Long runk. To make the
recursive formula (3) complete, we add that for each k ≥ 2, if Pk = Sk, then Lk is defined in the same
way as Sk, with the only difference that the exponent defined by aia(k) (or by aia(k)+1) is increased
by 1. If Pk = Lk, then Sk is defined in the same way as Lk, with the only difference that the exponent
defined by aia(k) (or by aia(k)+1) is decreased by 1.

The value of the index jump function for each natural k ≥ 2 describes the index of the CF element
which determines the most frequent run on level k − 1 (denoted maink−1), which we can formulate as
the following corollary. The corollary also describes the cardinality-wise run length on each digitization
level and shows how to conclude about the kind of the prefix Pk−1 as obtained in (3) (long Lk−1 or
short Sk−1) from the parity of ia(k).

Corollary 1. Let a ∈ ]0, 1[ \ Q and a = [0; a1, a2, a3, . . .]. If s′(a) is the upper mechanical word with
slope a and intercept 0 as defined in Definition 1, then, in the run-hierarchic structure of s′(a) we
have for each k ≥ 2

• aia(k) ≥ 2 ⇒ maink−1 = Sk−1, aia(k) = 1 ⇒ maink−1 = Lk−1,
• ia(k) is odd ⇒ Pk−1 = Lk−1, ia(k) is even ⇒ Pk−1 = Sk−1,

where ia is the corresponding index jump function. Moreover, the cardinality-wise run length on each
level is the following: ‖Sn‖ = bn, ‖Ln‖ = bn + 1, where

b1 = a1 and, for n ≥ 2, bn =

{
aia(n), aia(n) 
= 1
1 + aia(n)+1, aia(n) = 1 .

(4)

Corollary 1 follows immediately from Theorem 1.
Let us recall the concept of the sequence of length specification which was first introduced by the

author in [23] (Definition 3 there).

Definition 3. For any irrational a = [0; a1, a2, . . .], the sequence (bn)n∈N+ = (‖Sn‖)n∈N+ of short
run lengths on all levels in the run-hierarchical construction of the upper mechanical word s′(a) with
slope a and intercept 0, will be called the sequence of length specification.

It is clear from (4), that for each a ∈ ]0, 1[ \Q, the corresponding sequence of length specification
(bn)n∈N+ fulfills b1 ∈ N+ and, for each n ≥ 2, bn ≥ 2. In [23] we also showed that each sequence
fulfilling these condition is the sequence of length specification for some slopes and the cardinality of
the set of these slopes is of the continuum. For a fixed index jump function (i.e., a sequence of values
(dn)n∈N+ such that d1 = 1, d2 = 2 and, for all k ≥ 2 dk ∈ N+ and dk+1 − dk = 1 or dk+1 − dk = 2)
there exists exactly one slope with (bn)n∈N+ as sequence of length specification [23, 24].
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3 The constructional word

In this section we will define (Definition 4) a new binary word associated with the upper mechanical
word s′(a) for a ∈ ]0, 1[ \ Q and we will call it the constructional word. It follows from Definition 2
that, for any a ∈ ]0, 1[ \ Q and n ≥ 2

aia(n) = 1 ⇔ ia(n + 1) = ia(n) + 2 and aia(n) ≥ 2 ⇔ ia(n + 1) = ia(n) + 1. (5)

The sequence (ia(n))n∈N+ is thus strictly increasing and the difference between each two consecutive
elements of this sequence is equal to 1 or to 2. This gives us an idea of defining a new two-letter word
associated with a. This word will be called the constructional word and it will code the structure of
s′(a) in terms of long and short runs on all the levels, according to Corollary 1 and (5).

Definition 4. Let a ∈ ]0, 1[ \ Q. The constructional word of a is γ = γ(a), defined by

γn = ia(n + 2) − ia(n + 1) − 1

for n ∈ N+, where ia is the index jump function defined in Definition 2.

It follows from (5) that the constructional word for all a ∈ ]0, 1[ \ Q is a 0-1 word, and, for all
n ∈ N+, γn = 1 ⇔ aia(n+1) = 1 and γn = 0 ⇔ aia(n+1) ≥ 2. This gives us the following proposition.

Proposition 1. For each a ∈ ]0, 1[ \ Q and for each n ∈ N+ we have γn = δ1(aia(n+1)), where ia is
the index jump function defined in Definition 2.

Corollary 1 shows clearly why γ got the name of constructional word. The elements aia(k) for
k ≥ 2 of the CF expansion of the slope a ∈ ]0, 1[ \ Q determine the construction of runsk as sets of
short and long runsk−1. The indices k ∈ N+ numbering letters of γ equal to 1 are the same as the
indices of the digitization levels with the most frequent long runsk (Lk).

Example 1. If the slope a is e − 2 = [0; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, . . . , 1, 1, 2n, 1, 1, . . .], then the
index jump function ia is formed as follows:

a = [0;
b1
1,

b2
2 ,

b3︷︸︸︷
1, 1,

b4
4 ,

b5︷︸︸︷
1, 1,

b6
6 ,

b7︷︸︸︷
1, 1 ,

b8
8 ,

b9︷︸︸︷
1, 1,

b10
10,

b11︷︸︸︷
1, 1 , . . .]

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ . . .
(ia(k))k∈N+= ( 1, 2, 3, 5, 6, 8, 9, 11,12, 14,15, . . .).

In the last row we presented the first eleven elements of the sequence of the values of the index
jump function for this a, so (ia(k))1≤k≤11. The sequence of length specification for a = e − 2 is
(bn)n∈N+ = (1, 2, 2, 4, 2, 6, 2, 8, 2, 10, 2, . . . 2, 2n, 2, . . .). The constructional word is γ(e − 2) = (01)ω.
On odd-numbered levels k short runs (Sk) are the most frequent runs, while on even-numbered levels
k long runs (Lk) dominate. The run-hierarchical structure of the digital line y = (e−2)x was thoroughly
discussed in the author’s paper [21, p. 2252, Example 14].

Definition 4 describes how to form the word γ for a ∈ ]0, 1[ \ Q, in terms of the corresponding
function ia. The following proposition is a kind of converse to this definition. It says, how to find the
function ia, given the constructional word of a.

Proposition 2. If a ∈ ]0, 1[ \ Q and γ = γ(a) is the constructional word associated with a, then we
have for n ≥ 3

ia(n) = n +
n−2∑
j=1

γj . (6)
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Proof. By induction, from Definitions 2 and 4. ��
We know, from the author’s papers [23, 24], that (ia(n))n∈N+ and (bn)n∈N+ determine the slope

a ∈ ]0, 1[ \ Q. Because of Definition 4 and Proposition 2 we know that also (γn)n∈N+ and (bn)n∈N+

determine the slope a ∈ ]0, 1[ \ Q.

4 Introduction to Sturmian words

In this section we provide a very brief introduction to Sturmian words, based on Lothaire (2002) [13].
Let A be a set of symbols usually called the alphabet. We denote by A� (in some papers denoted

by A(N)) the set of all finite words over A (i.e., finite sequences of elements from A) and by ε the
empty word. We denote by Aω (AN) the set of (right) infinite words (i.e., sequences of symbols in A
indexed by non-negative integers). In this paper we consider only right infinite words.

A finite word w is a factor of a (finite or infinite) word x if there exist words u (finite) and y
such that x = uwy. Sturmian words are defined as infinite words which have exactly n + 1 different
factors of length n for every natural n. In particular, they have 2 factors of length 1, which means that
each Sturmian word is constructed of exactly 2 letters, which we can call 0 and 1, thus A = {0, 1}.

A word x ∈ Aω is periodic if it is of the form x = zω for some z ∈ A� \ {ε}, eventually periodic
if it is of the form x = yzω for some y, z ∈ A� \ {ε}, and aperiodic if it is not eventually periodic;
cf. Lothaire (2002) [13, p. 9]. We need the following definition to formulate a theorem which shows
equivalent characterizations of Sturmian words (Theorem 2).

Definition 5 (Lothaire 2002:48). For binary words with letters 0 and 1 we define the following.

• The height of a finite word x is the number h(x) of letters equal to 1 in x.
• Given two finite words x and y of the same length, their balance is δ(x, y) = |h(x) − h(y)|.
• A set of finite words X is balanced if ( x, y ∈ X ∧ |x| = |y| ) ⇒ δ(x, y) ≤ 1.
• An infinite word is itself balanced if the set of its factors (thus, finite words) is balanced.

Theorem 2 (Lothaire 2002:57). Let s be an infinite word. We have the following equivalence:
s is Sturmian ⇔ s is balanced and aperiodic ⇔ s is irrational (lower or upper) mechanical.

5 A fixed-point theorem for Sturmian words. Self-generating run construction.

In Sections 2 and 3 we described two words over a two-letter alphabet {0, 1} associated with an
irrational positive slope a < 1. The first of them, the upper mechanical word, is Sturmian (Theorem 2),
the second one, the constructional word, can obviously be any 0-1 word. One could try to describe
the slopes a ∈ ]0, 1[ \Q, for which the levels with the most frequent run being long (or, dually, short)
are uniformly distributed (for such a we will call s′(a) words with balanced construction). And an even
more demanding condition would be: find these a for which γ(a) = c(a). For these a, s′(a) = 1c(a)
will be called word with self-balanced construction, because the distribution of the levels with the most
frequent run being long (equivalently: the distribution of pairs (al, al+1) of CF elements of a such that
al = 1, l ≥ 2, and al is not immediately preceded by an odd number of consecutive CF elements equal
to 1 and with indices greater than 1) is the same as the distribution of the letter 1 in the characteristic
word c(a); c.f. Proposition 4 on page 8 and the discussion there.

We consider {0, 1}ω, the set of all right infinite two-letter words composed of 0’s and 1’s and let
UM0 ⊂ {0, 1}ω be the subset of all upper mechanical words with positive irrational slopes less than
1 and with intercept 0 (which are Sturmian according to Theorem 2).
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Definitions 1 and 4 give us two mappings from ]0, 1[ \ Q to {0, 1}ω. The first one maps each
a ∈ ]0, 1[ \ Q to the associated upper mechanical word s′(a) = 1c(a):

s′: ]0, 1[ \ Q −→ UM0 ⊂ {0, 1}ω,

the second one maps each a ∈ ]0, 1[ \Q to the associated constructional word γ(a) concatenated with
prefix 1:

1γ: ]0, 1[ \ Q −→ {0, 1}ω, (1γ)(a) = 1γ(a).

Definition 6. The run-construction encoding operator Δc:UM0 −→ {0, 1}ω is defined as Δc =
(1γ) ◦ (s′)−1.

{0, 1}ω ⊃ UM0

]0, 1[ \ Q UM0
�

�

����������

s′

Δc1γ

The mapping is well defined (Lemma 2.1.21 from Lothaire 2002:62 mentioned in Section 2). We can
also describe this operator by analogy with the run-length encoding operator as in [6]:

Δc(s′(a))(0) = 1, Δc(s′(a))(n) = δ1(aia(n+1)) for n ∈ N+

which, according to Corollary 1, can be written in the following, more illustrative way:

Δc(s′(a))(n) =

{
0, Sn is the most frequent run on level n
1, Ln is the most frequent run on level n

for n ∈ N+.

Definition 7. Let a ∈ ]0, 1[ \ Q. The upper mechanical word s′(a) has

• balanced construction if its constructional word γ(a) is a characteristic word c(α) (not necessarily
with irrational slope) for some α.

• Sturmian-balanced construction if γ(a) is a characteristic word c(α) for some α ∈ ]0, 1[ \ Q.
• self-balanced construction if 1γ(a) = Δc(1c(a)) = 1c(a), i.e., its constructional word is equal to its

characteristic word, i.e., s′(a) is a fixed point of Δc.

Clearly: self-balanced construction ⇒ Sturmian-balanced construction ⇒ balanced construction.

Example 2. The words s′(a) with a = [0; a1, a2, a3, . . .], where ak ≥ 2 for all k ≥ 2, have balanced
construction. We have ia(k) = k for all k ∈ N+ and aia(k) ≥ 2 for all k ≥ 2. This means that the
constructional word γ = γ(a) is defined by γn = 0 for all n ∈ N+, which is the characteristic word with
slope 0. This also means that no upper mechanical word with dominating short run on all digitization
levels can be a fixed point of Δc.

Example 3. The words s′(a) with a = [0; a1, 1, a3, 1, a5, 1, a7, . . .], where a2k−1 ∈ N+ for all k ∈ N+,
have balanced construction. We have ia(1) = 1 and ia(k) = 2k − 2 for k ≥ 2, and aia(k) = 1 for
all k ≥ 2. This means that the constructional word γ = γ(a) is defined by γn = 1 for all n ∈ N+,
which is the characteristic word with slope 1. This also means that no upper mechanical word with
dominating long run on all digitization levels can be a fixed point of Δc.
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Let us recall the following theorem, which is a merge of Lagrange’s theorem from 1770 with Euler’s
theorem from 1737; see [4, pp. 66–71].

Theorem 3 (Euler, Lagrange). Quadratic surds (i.e., algebraic numbers of the second degree), and
only they, are represented by periodic or eventually periodic CFs.

Example 4. A generalization of Example 3: For each k ∈ N+ \ {1} and for each infinite matrix A =
[aij ]i∈N+,j∈[1,k]Z , where ai1 ∈ N+ and aij ∈ N+ \ {1} for i ∈ N+ and j ∈ [2, k]Z, the upper mechanical
words s′(a) with slopes a = [0; a11, . . . , a1k, 1, a21, . . . , a2k, 1, a31, . . . , a3k, 1, a41, . . . , a4k, 1, a51, . . .] have
balanced construction. We have aia(nk+1) = ank+n = 1 for all n ∈ N+. The constructional words
of all these slopes for a fixed k are 0k−110k−110k−11 . . . . They correspond to the word with slope 1

k . If
all the rows of the matrix A are identical, the CF expansion is periodic and a is quadratic irrational.

Example 5. A generalization of Example 3: For each k ∈ N+ \ {1} and each pair of infinite ma-
trices [aij ]i∈N+,j∈[1,k]Z and [a′ij ]i∈N+,j∈[1,k+1]Z such that ai1, a

′
i1 ∈ N+ and aij , a

′
is ∈ N+ \ {1} for

all indices i ∈ N+, j ∈ [2, k]Z and s ∈ [2, k + 1]Z, the upper mechanical words s′(a) with slopes
[0; a11, . . . , a1k, 1, a′11, . . . , a′1,k+1, 1, a21, . . . , a2k, 1, a′21, . . . , a′2,k+1, 1, a31, . . .] have balanced construc-
tion. The constructional words of all these s′(a) for fixed k are 0k−110k10k−110k10k−11 . . .. They
correspond to the upper mechanical words s′(a) with slopes a = 2

2k+1 .

Proposition 3. There exist no quadratic surds which are slopes to upper mechanical words with
Sturmian-balanced construction.

Proof. Let a ∈ ]0, 1[ \ Q be any quadratic surd. If there are no 1’s in the CF expansion of a, then
γ(a) = 000 · · ·, which is the characteristic word with slope 0, which is rational. If there is a 1 in the
CF expansion of a, then, according to Theorem 3, either this 1 is only in the beginning of the CF (if
we have eventual periodicity) or is repeated periodically, which will lead to a characteristic word of a
rational number, if any. ��

Quadratic surds with purely periodic CF expansion are slopes of fixed points of corresponding
substitutions as defined in Shallit (1991) [18]. It follows from Proposition 3, that no quadratic surds
can be slopes of fixed points of Δc. No quadratic surds can have Sturmian-balanced construction,
but some of them have balanced construction. It would be an interesting combinatorial exercise to
describe all the quadratic surds with balanced construction (give a necessary and sufficient condition
on the CF expansion of slopes) and, generally, to give a necessary and sufficient condition on the
elements of the CF expansion of a = [0; a1, a2, . . .] to generate an upper mechanical word s′(a) with
balanced construction, Sturmian-balanced construction, self-balanced construction. Proposition 1 and
Definition 7 give us the following characterization of the CF expansion of the slopes of fixed points
of Δc. Let a = [0; a1, a2, . . .]. A pair (al, al+1) of CF elements in the expansion of a will be called
an essential pair if al = 1, l ≥ 2, and the element al = 1 is immediately preceded by an even
number, i.e., 0, 2, 4, . . ., of consecutive 1’s with index greater than 1, i.e., ∃ k ∈ N, [0; a1, a2, . . .] =
[0; a1, a2, . . . , al−2k−1, 1, 1, . . . , 1, 1︸ ︷︷ ︸

2k

, al, al+1, . . .] and, if l − 2k − 1 ≥ 2, then al−2k−1 ≥ 2; cf. essential

1’s in [23, 24].

Proposition 4. If a = [0; a1, a2, . . .], then s′(a) is a fixed point of Δc iff cn(a) = δ1(aia(n+1)) for all
n ∈ N+, where c(a) is the corresponding characteristic word.

This means that for a fixed point s′(a) = 1c(a), each essential pair in the CF expansion of a reflects in
the letter 1 on the corresponding place in c(a), while the letters 0 of c(a) appear on places corresponding
to the places of remaining (i.e., no members of essential pairs) CF elements ak (k ≥ 2) of a.
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An upper mechanical word with slope a ∈ ]0, 1[ \ Q and intercept 0 is a word with self-balanced
construction (a fixed point of Δc) if its construction according to the hierarchy of runs and the arrange-
ment of 0’s and 1’s in the word itself are made according to the same rules. The levels with dominating
long runs are uniformly distributed like the 1’s in the original characteristic word corresponding to
the upper mechanical word. The following theorem is the main result of this paper.

Theorem 4 (main result). Let (bn)n∈N+ be any sequence of natural numbers such that b1 ∈ N+

and bn ≥ 2 for all n ≥ 2. There exists exactly one fixed point of Δc with (bn)n∈N+ as the sequence of
its length specification as defined in Definition 3.

Proof. We will show how to find the fixed point w = s′(a) corresponding to given (bn)n∈N+ . The
uniqueness will follow from the construction. In our reasoning we will use the following rules:

R1. Fixed point condition: for each k ∈ N, prefk+1(w) = 1γ1 · · · γk, where prefk+1(w) denotes the k+1
letters long prefix of the upper mechanical word w = s′(a) we are looking for, and γ = γ(a).

R2. (γ1, γ2, . . . , γk) determines (ia(1), ia(2), . . . , ia(k + 2)) according to (6)
R3. (γ1, γ2, . . . , γk) and (b1, b2, . . . , bk+1) determine (a1, a2, . . . , aia(k+1)) according to R2, Proposition 1

and (4) in the following way. For j = 1, 2, . . . , k

γj = 1 ⇒
[
aia(j+1) = 1 ∧ aia(j+1)+1 = bj+1 − 1

]
, γj = 0 ⇒ aia(j+1) = bj+1

R4. According to R2 and R3, (γ1, . . . , γk) and (b1, . . . , bk+1) determine (uniquely!) the prefix Pk+1 (as
in the run-hierarchical description (3)) of the upper mechanical word w we are looking for.

One can see that we need to describe a way of finding (γ1, γ2, . . .) to be able to reconstruct the
fixed point (according to the condition R1) with the length specification (b1, b2, b3, . . .). Because we
do have whole (b1, b2, b3, . . .), R1–R4 imply that it is enough to show that for any k ∈ N+ we have
|Pk+1| > k+1 = |1γ1 · · · γk|, i.e., that the prefixes produced of (γ1, γ2, . . . , γk) and (b1, b2, b3, . . .) are on
each step of the construction long enough to supply us with more information about the constructional
word, which enables us to continue the construction using R1. So we have to prove |Pk+1| > k + 1 for
each k ∈ N+ (which is actually a severe understatement; see Corollary 1 in [22] and the last but one
column in the table in Example 6).

Let us first suppose that b1 ≥ 2. We know from Theorem 1, that P1 is short and |P1| = b1 ≥ 2 > 1,
so, because of the recursive construction (3), we get by easy induction |Pk+1| ≥ 2k+1 > k + 1.

If b1 = 1, we get from Theorem 1 |P1| = 1, which does not look well, because |P1| < 2. To continue
our construction, we have to get our information about γ1 from somewhere else than P1 and R1.
Because the first run of level 1 is always short, we know that s′(a) = 1c(a) = 11 . . . , thus, R1 gives us
γ1 = 1. This implies (rule R3) that a2 = aia(1+1) = 1 (and a3 = b2−1) and we get the following prefix
of s′(a): P2 = S2 = S1L

a3
1 = 1(10)b2−1 from (3) (the second row of the formula, because ia(2) = 2

and a2 = 1). Now we have already |P2| ≥ 3 > 1 + 1 for any b2 and again, we obtain by induction
|Pk+1| ≥ 2k−1 · 3 > k + 1 for k ≥ 1, which completes the proof. ��

The speed of finding the fixed point grows together with b1, but we have shown that even in case
b1 = 1 we can both get started and go on with our construction. Let us take the length specification
b1 = 1 and bn = 2 for n ≥ 2. This gives the slowest possible process of finding of the slope of the fixed
point, but still, even in this worst case, it is possible to construct the unique fixed point:

Example 6. We will find the fixed point of Δc with the length specification (1, 2, 2, 2, . . .). We are thus
looking for such a ∈ ]0, 1[ \ Q that prefk+1(s′(a)) = 1γ1 · · · γk for each k ∈ N, and (1, 2, 2, 2, 2, . . .) is
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the corresponding sequence of length specification. At the starting point we only know that the first
letter of s′(a) is, by definition, 1. In each of the following steps we get P2, P3, . . . (step n gives us Pn+1).

The facts that b1 = 1 and that the first run of level 1 is short, gives us only the information, that
s′(a) = 1c(a) = 11 . . . thus, because pref2(s′(a)) = 1γ1, we get γ1 = 1, which implies (rule R3) that
a2 = aia(1+1) = 1 (and a3 = b2−1 = 1) and we get the following prefix of s′(a): P2 = S2 = S1L1 = 110
from (3) (the second row of the formula, because ia(2) = 2 and a2 = 1). We have moreover ia(3) =
3 + γ1 = 4 (even number).

Further, because 110 = pref3(s′(a)) = 1γ1γ2, we get γ2 = 0, which means that aia(2+1) = a4 =
b3 = 2 and ia(4) = 4 + γ1 + γ2 = 5. We get P3 = L3 = S2

2L2 = 11011011010 (from the first row of (3),
because aia(3) 
= 1 and ia(3) is even). This gives us, because of R1, γ3 = 1, γ4 = 1, γ5 = 0, γ6 = 1,
γ7 = 1, γ8 = 0, γ9 = 1, γ10 = 0, which, according to R4, allows us to get P4, · · · , P11. Prefixes P2, P3

and P4 are illustrated on Figure 2. One can see the analogy to Figure 1.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� 	 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� 


� �

� �

Fig. 2. The prefixes P2, P3 and P4 of the fixed point of Δc with the length specification (bn)n∈N+ = (1, 2, 2, 2, . . .).

We can summarise the data we have until now in the following table. In the next to last column,
|Pk+1| denotes the binary-word length of prefix Pk+1 (total number of 0’s and 1’s forming it).

given k ia(k + 1) aia(k+1) bk+1 Sk+1 Lk+1 gives Pk+1 |Pk+1| gives

γ1 = 1 1 2 = 1 2 S1L1 S1L
2
1 S1L1 3 γ2

γ2 = 0 2 4 
= 1 2 S2L2 S2
2L2 S2

2L2 11 γ3, . . . , γ10

γ3 = 1 3 5 = 1 2 L3S3 L2
3S3 L2

3S3 30 γ11, . . . , γ29

γ4 = 1 4 7 = 1 2 L4S4 L2
4S4 L2

4S4 79 γ30, . . . , γ78

γ5 = 0 5 9 
= 1 2 L5S5 L5S
2
5 L5S5 128 γ79, . . . , γ127

γ6 = 1 6 10 = 1 2 S6L6 S6L
2
6 S6L6 305 γ128, . . . , γ304

γ7 = 1 7 12 = 1 2 S7L7 S7L
2
7 S7L7 787 γ305, . . . , γ786

γ8 = 0 8 14 
= 1 2 S8L8 S2
8L8 S2

8L8 2843 γ787, . . . , γ2842

γ9 = 1 9 15 = 1 2 L9S9 L2
9S9 L2

9S9 7742 γ2843, . . . , γ7741

γ10 = 0 10 17 
= 1 2 L10S10 L10S
2
10 L10S10 12641 γ7742, . . . , γ12640

We proceed in this way. The fixed point s′(a) = 1c(a) is
S2︷︸︸︷
110

S2︷︸︸︷
110

L2︷ ︸︸ ︷
11010

L3︷ ︸︸ ︷
11011011010

S3︷ ︸︸ ︷
11011010︸ ︷︷ ︸

L4

110110110101101101101011011010︸ ︷︷ ︸
L4

1101101101011011010︸ ︷︷ ︸
S4

. . .
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so the constructional word γ(a) = 101101101011011011010 . . ., which gives the following slope a:

[0; 1, 1, 1︸︷︷︸
aia(2)=1

, 2, 1, 1︸︷︷︸
aia(4)=1

, 1, 1︸︷︷︸
aia(5)=1

, 2, 1, 1︸︷︷︸
aia(7)=1

, 1, 1︸︷︷︸
aia(8)=1

, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, . . .].

Let us analyze the set of all fixed points of Δc.

Theorem 5. Let Fix(Δc) ⊂ UM0 denote the set of all fixed points of Δc. Then:

1. Fix(Δc) ⊂ s′(]0, 2
3 [\Q); numbers 0 and 2

3 are accumulation points of (s′)−1(Fix(Δc)).
2. card(Fix(Δc)) is equal to that of the continuum.

Proof. It is clear that we can go as near as we want towards 0. If we take b1 → ∞ then [0; b1, b2, . . .] → 0.
It remains to be shown that we cannot have a fixed point with slope larger than 2

3 . We will look for
maximal a such that 1c(a) is a fixed point of Δc. First, to get as large slope as possible, we have to have
b1 = 1 (otherwise the slope is less than 1

2). So, we proceed as in Example 6, s′(a) = 11 . . ., thus γ1 = 1,
so a2 = 1, which means that aia(2) = 1, so ia(3) = 4 (a3 is not of the form aia(k) for any k ∈ N+). The
maximal possible slope of a fixed point begins with [0; 1, 1, . . .]. We are absolutely free in the choice of
the next element, because it does not affect the constructional word, as it is not a value of the index
jump function. So, to make the slope maximal, we choose 1, because [a0; a1, a2, . . .] < [a′0; a′1, a′2, . . .]

iff (a0,−a1, a2,−a3, a4,−a5, . . .)
lexic.
< (a′0,−a′1, a′2,−a′3, a′4,−a′5, . . .), where the second inequality is

according to the lexicographical order on sequences. Taking b3 → ∞ (thus, making the slope as large
as possible), we get the limit value of 2

3 , because [0; 1, 1, 1, b3, . . .] → 2
3 . We can also illustrate the

solution with the following table:

given k ia(k + 1) aia(k+1) bk+1 Sk+1 Lk+1 gives Pk+1

γ1 = 1 1 2 = 1 2 S1L1 S1L
2
1 S1L1

γ2 = 0 2 4 
= 1 b3 Sb3−1
2 L2 Sb3

2 L2 Sb3
2 L2

so the largest slopes of fixed points have the form [0; 1, 1, 1, b3, . . .] and tend to 2
3 when b3 → ∞.

s′(a) = Sb3
2 L2 . . . = (110)b3(11010) . . .

b3→∞→ s′
(

2
3

)
.

To prove the second statement of the theorem, we only need to recall that, according to Theorem 4,
each sequence of length specification generates exactly one fixed point and each fixed point has its
length specification (the same). The set of all fixed points has thus the same cardinality as the set of
all sequences of length specification, which is the same as this of NN. ��

6 Conclusions and open problems

In this paper we have defined a run-construction encoding operator by analogy to the well-known run-
length encoding operator and we formulated and proved a fixed-point theorem for Sturmian words. We
also presented some combinatorial problems concerning quadratic surds (on p. 8, after Proposition 3).
Some questions and problems arise also in connection with the run-construction encoding operator
and the set of its fixed points. Theorem 5 gives us some answers. It states that the cardinality of the
set of all fixed points is equal to that of the continuum (which follows from the main theorem of this
paper, Theorem 4) and that no slopes of fixed points are larger than 2

3 . No fixed point of substitutions
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as described in Shallit (1991) [18] can be a fixed point of the run-construction encoding operator.
Proposition 3 states that no quadratic surds can be slopes of fixed points of the operator.

There are still some problems to be solved. For example:
• Is the set of slopes of all fixed points of the run-construction encoding operator, i.e. the set
(s′)−1(Fix(Δc)), dense in ]0, 2

3 [\Q? Does it have accumulation points different from 0 and 2
3?

• What kind of irrational numbers are the slopes of fixed points? Are they all transcendental?
• An algorithm finding fixed points related to the equivalence classes defined by sequences of length
specification (b1, b2, . . .) could be written.
• How can we use the fixed points in digital geometry?

Acknowledgments. I am grateful to Christer Kiselman for comments on earlier versions of the
manuscript.
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