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1

Words and lines



1.1

Words



Finite words

A – alphabet (a set of symbols)

A* - the set of finite words over A

(A* , +) - is a monoid :
             - concatenation (+) is associative (u+v)+w=u+(v+w)
                101010+1111=1010101111
             - the empty word ε is the neutral element

(A* , +) is called the free monoid on the set A.

- no inverse operation, no commutativity



Infinite words

A – alphabet (a set of symbols)

A ω - the set of right infinite words over A

For example, if A={1,2}, then the words are:



             Sturmian words

The word w is called a factor of a word u if there exist 
words x, y such that u=x+w+y.

10101   is a factor of   10101010101010101

1222   is a factor of   000122211113213110101001

10101   is a factor of   10101

ABCDA   is a factor of   CBBBDACADBCAABCDA



             Sturmian words

Sturmian words are infinite words which have exactly
m+1 different factors of length m for every natural m.
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Sturmian words are infinite words which have exactly
m+1 different factors of length m for every natural m.

m=1 two letters (binary words)
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Balanced words (binary)

10101001010010101001010010101001010010100

n = 41

m = 16

7 6

Each m-letter long factor of this word can contain either k or k+1 1's

n – the length of the word

m – any positive natural number less than n

k = 6

An example:



Balanced words give straight lines

10101001010010101001010010101001010010100

1
1

1 0 0
0

0

1
1

1 0 0
0

0

1
1 0 0

0



             Upper and lower mechanical, characteristic words



             Sturmian words : different characterizations



1.2

Lines



 Digital geometry – R'-digitization



 Digital geometry – R'-digitization



 Digital geometry – straight lines

The arithmetical expression of the R'-digitization 

of the line y = ax for irrational positive a less than 1 :



 Digital geometry – straight lines

The R'-digital line y = ax with irrational slope 

a = [ 0 ; a
1
 , a

2
 , ... ] 



 Digital geometry – straight lines and mechanical words

The R'-digital line y = ax with slope a = [ 0 ; a
1
 , a

2
 , ... ] 

and the corresponding upper mechanical word  s'(a) :



 Digital geometry – the concept of run



 Digital geometry – the concept of run
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Sturmian words with balanced construction

Two run lengths on level 1:  runs1  S1=10m and L1=10m+1

Two run lengths on level 2:  runs2  S2=S1L1
k and L2=S1L1

k+1

or S2=S1
kL1 and L2=S1

k+1L1

Two run lengths on level n:  runsn  Sn=Sn-1Ln-1
l and Ln=Sn-1Ln-1

l+1

or Sn=Sn-1
lLn-1 and Ln=Sn-1

l+1Ln-1

or Sn=Ln-1
lSn-1 and Ln=Ln-1

l+1Sn-1

or Sn=Ln-1Sn-1
l and Ln=Ln-1Sn-1

l+1

 Digital geometry – the concept of run

1 10 0 0 0 00 0 0 0 0 0 0 0S1 L1



Hierarchy of runs – runs on level k+1



Hierarchy of runs

Three questions. About:

the run length on level k+1

the main run on level k

the first run on level k



2

Continued fractions



Continued fractions - notation



Continued fractions – the CF-elements



Continued fractions – a definition



Continued fractions – an example



Continued fractions and decimal expansions



The CF-expansion of a is periodic

a is a quadratic surd

Periodicity of continued fractions



Quadratic surd (quadratic irrational) ...

… is an algebraic number of the second degree, i.e.:

is irrational and is a root of some equation

              a
2
x2 + a

1
x + a

0 
= 0 

with integer coefficients. 

is a root of



?

Periodicity of continued fractions



x

?

Periodicity of continued fractions



?

Periodicity of continued fractions

x



?

Periodicity of continued fractions



Periodicity of continued fractions



The CF-expansion of a is periodic

a is a quadratic surd
Euler 1737

Periodicity of continued fractions



The CF-expansion of a is periodic

a is a quadratic surd
Euler 1737

Lagrange 1770

Periodicity of continued fractions



CF-expansion decimal expansion

finite

infinite

periodic

aperiodic

rational rational

rational
irrational

irrational
irrational

(quadratic surd)

(no quadratic surd)

Continued fractions and decimal expansions



Continued fractions – periodic patterns
(Euler 1737)
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Continued fractions – periodic patterns
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Continued fractions – periodic patterns
(Lambert 1761)



Continued fractions – periodic patterns
(Lambert 1761)
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Combinatorics on CFs



Important issues

Two equivalence relations on the set of slopes

A new fixed point theorem for words
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        An informal introduction to the equivalence relations on CFs



The index jump function

The index jump function



The index jump function:  an example

An essential 1 is a CF-element equal to 1
and indexed by a value of the index jump function.



The index jump function - properties

Its values are positive integers

The function is increasing

For each slope a and for each positive integer n































>1 >1



>1 >1 =1 =1



>1 >1 =1 =1



>1 >1 =1 =1



>1 >1 =1 =1



The sequence of length specification for a



odd odd



odd oddeven even



The index jump function:  how it describes the runs

Essential 1's are extremely important in description of runs.



Level : 1 2 3 4 5 6 7 8 9 10 11 12

Digitization levels



Level : 1 2 3 4 5 6 7 8 9 10 11 12

||Sk || = bk

Short run length: the CF elements



Level : 1 2 3 4 5 6 7 8 9 10 11 12

maink S1 L2 S3 L4 S5 S6 L7 S8 L9 L10 S11 ?

The most frequent run: essential 1's

ai (k+1)>1
a

ai (k+1)=1
a



Level : 1 2 3 4 5 6 7 8 9 10 11 12

firstk S1 S4 S5 S7 S8L2 L3 L6 L9 L10 L11
ia(k+1) even 

ia(k+1) odd 

?

The first run: parity of the function



 An illustration: for a
2
=2 and a

5
=3:



The sequence of length specification for a



The same run length on all digitization levels

Each class is generated by a sequence (b
n
) such that:

Each such (b
n
) is the sequence of length specification 

for some slope



Two equivalence relations on the set of slopes

1. based on run length on all levels for s'(a):

2. based on run construction on all levels for s'(a):



Done until now and to be done after a break:

1. Background information

2. Intuitions

3. Formal definitions and some motivation

4. Some results and open questions:

- description of classes

- fixed point theorem.
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Defined by run lengths (their cardinality)

||S
1
||=1, ||S

2
||=2, ||S

3
||=2, ||S

4
||=3.

All lines from the same class have the same run lengths on all digitization levels.

Quantitative equivalence relation (run length)

23 = 8



How to compare continued fractions



The least element of the class :

Quantitative equivalence relation (run length)

The largest element of the class :



Qualitative equivalence relation (run construction)

Equivalently defined by the places of essential 1's

Defined by the index jump function

All lines from the same class have the same 
construction in terms of long and short runs on all 
digitization levels.

The least element in each class is 0.



Qualitative equivalence relation (run construction)



Qualitative equivalence relation (run construction)

Each essential sequence defines an equivalence
class under relation con.

An example:



Supremum for each class:

Qualitative equivalence relation (run construction)



How to compare continued fractions

















 
A new fixed point theorem for words



Kolakoski word

The set of all right infinite words over {1,2}:



Kolakoski word

The run-length encoding operator



Kolakoski word

The run-length encoding operator – an example:

w = 11111212222222112221212222222221 ...

∆
l
(w) = 5,1,1,7,2,3,1,1,1,9, ...



Kolakoski word



Fixed point theorem: the constructional word



Fixed point theorem: the constructional word



Fixed point theorem: the run-construction encoding operator



Balanced construction



Balanced construction – some examples

Paper VI. Examples 2, 3, 4, 5.



Fixed point theorem

A fixed-point theorem: 
exactly 1 fixed point in each equivalence class



Fixed point theorem

A fixed-point theorem: 
exactly 1 fixed point in each equivalence class



Fixed point theorem

A fixed-point theorem: 
exactly 1 fixed point in each equivalence class



Equivalence classes under the relation len



Equivalence classes under the relation len



Hanna Uscka-Wehlou

Sturmian words with balanced constructionThe set of all fixed points

No quadratic surd can be a fixed point!

Their constructional words have rational slopes, if any.

(Proposition 3 in Paper VI).



Hanna Uscka-Wehlou

Sturmian words with balanced constructionThe set of all fixed points



Some combinatorial questions

Combinatorics on words – new classes of words

What can one say about the fixed points?

Iterations of the run-construction encoding operator

Two kinds of description: by the CF-elements and by the
properties of real numbers (transcendental, algebraical)

Formulate an iff condition for CFs of fixed points.



Thank you for
your attention
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