

http://hania.wehlou.com

hania@wehlou.com

Continued Fractions & Digital Lines

Hanna Uscka-Wehlou

Sweden, Uppsala University, Department of Mathematics

The digitization we describe is the following modification of Rosenfeld digitization:

We present a new, continued fraction based, recursive description of digital half lines y = ax, x > 0 for irrational *a* from the interval]0,1[. The description reflects the hierarchy of runs.

$$D_{R'}(y = ax, x > 0) = \{(k, \lceil ak \rceil); k \in \mathbf{N}^+\}$$

elements of
$$a$$
, if

$$a = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \cdots}}} \stackrel{\text{def.}}{=} [0; a_1, a_2, a_3, \dots].$$

 $q_n = a_n q_{n-1} + q_{n-2}$

Run hierarchic description in terms of long and short runs on all the digitization levels. Expressed by the index jump

<u>Two kinds of run length</u>

The pixel-wise length of runs

Expressed by means of the denominators of

function. Illustrated on the picture.

Sequences (b_n) of length specification define a quantitative equivalence relation LENGTH.

The places of essential 1's define a qualitative equivalence relation CONSTRUCTION. FIBONACCI numbers and THE GOLDEN SECTION

This poster is based on my 3 articles (pre-prints available):

$ S_n , L_n $ - the number of ixels contained in S_n, L_n espectively.	the convergents and the index jump function. The number of pixels in the line segment $y = ax$, $x > 0$, achieved in the n^{th} step: $ S_n = q_{i_a(n+1)-1}$, $ L_n = q_{i_a(n+1)-1} + q_{i_a(n+1)-2}$.
$ S_n - \text{the number of}$	The cardinality of runs
$uns_{n-1} \text{ contained in } S_n.$	Calculated according to the following formula:
$L_n = S_n +1.$	$ S_n = b_n = a_{i_a(n)} + \delta_1(a_{i_a(n)}) \cdot a_{i_a(n)+1}.$

1. Continued Fractions and Digital Lines with Irrational Slopes (the DGCI 2008 paper) 2. A New Description of Upper Mechanical Words with Irrational Slopes Using Continued Fractions (submitted in March 2008) 3. Two Equivalence Relations on Digital Lines with Irrational Slopes. A Continued Fraction Approach to Upper Mechanical Words (March 2008)